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Executive Summary  

 

The Chesapeake Bay and its watershed (hereafter “Chesapeake Bay region”) have been the 

focus of extensive restoration efforts for several decades. These restoration efforts are 

guided by the Chesapeake Bay Watershed Agreement (Chesapeake Executive Council 

2014) which outlines 10 goals and 31 measurable outcomes. The Chesapeake Bay is 

globally recognized as a model for coastal restoration due to long-term investments in 

monitoring, modeling, implementation and research by the Chesapeake Bay Program (CBP) 

partnership. These monitoring network spans tidal and non-tidal regions and provides data 

across multiple scales. Artificial intelligence (AI), particularly machine-learning (ML) and 

deep learning (DL), has emerged as a powerful tool for analyzing large, complex datasets. 

These techniques have gained widespread adoption across various disciplines, including 

ecology, hydrology, and environmental science. In the Bay context, AI/ML is increasingly 

being used to explore drivers of environmental change, analyze system dynamics, and 

predict conditions in areas with limited monitoring. 

 

The CBP partnership, particularly its Scientific and Technical Advisory Committee 

(STAC), has increasingly recognized the growing role of AI/ML in watershed and estuarine 

management. Recent Chesapeake Community Research Symposium sessions and initiatives 

such as the Chesapeake Global Collaboratory highlight increasing regional momentum to 

apply big data and AI/ML for environmental solutions. Together, these developments 

underscore the timely need to explore how AI/ML can help advance Chesapeake Bay 

restoration and management. 

 

This STAC workshop, titled “Leveraging Artificial Intelligence and Machine learning to 

Advance Chesapeake Bay Research and Management: A review of status, challenges, and 

opportunities,” was held from February 24-25, 2025, in Edgewater, Maryland to bring 

together over 50 federal, state, and academic scientists and partners to synthesize the 

current state of AI/ML applications and identify research gaps in Chesapeake Bay research 

and management. The workshop focused on three main objectives: 

1. Summarize recent AI/ML applications and lessons learned in both tidal and non-

tidal areas of the Chesapeake Bay region. 

2. Identify challenges and gaps in applying AI/ML approaches to Chesapeake Bay 

data. Such challenges and gaps may include data limitations, harmonization issues, 

ineffective communication of AI/ML insights, and a lack of coordination among 

research and management institutions. 

3. Develop recommendations and identify opportunities for leveraging AI/ML to 

address issues across the Chesapeake Bay region. Key areas of focus may include 

generating new information to support watershed management, delivering AI/ML-

generated insights to managers in a clear and actionable way, and fostering greater 

collaboration among stakeholders within the CBP Partnership. 

 

Workshop participants engaged in science presentations and breakout sessions to develop 

recommendations for advancing the integration of AI/ML techniques into research and 
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management across the Chesapeake Bay region. By synthesizing current applications, 

identifying challenges, and exploring new opportunities, the workshop has provided 

valuable insights and recommendations for better leveraging AI/ML approaches to support 

the success of Bay restoration efforts. Together, these recommendations provide a roadmap 

for enhancing data-driven, science-based decision making aligned with the goals and 

outcomes of the Chesapeake Bay Watershed Agreement. 

 

Recommendations 

 

1. Strengthen data infrastructure and integration for AI/ML applications 

• Harmonize spatial and temporal datasets across programs and ensure consistent metadata. 

• Leverage diverse datasets, including satellite, in-situ, and high-frequency data, for use in 

modeling and monitoring applications and filling data gaps. 

• Design monitoring and data processing efforts so that resulting products are problem-

relevant and can be readily incorporated into AI/ML workflows. 

• Build harmonized response and predictor datasets and develop example use cases to 

guide widespread AI/ML applications. 

 

2. Leverage AI/ML for restoration of Chesapeake Bay tidal and non-tidal regions and 

decision support 

• Use AI/ML to assess effectiveness and efficiency of restoration practices, evaluate 

progress, and identify drivers of environmental change. 

• Enhance watershed and estuarine models by integrating AI/ML outputs and insights. 

• Promote integration between AI/ML and traditional monitoring, analysis, and modeling 

approaches to enhance scientific credibility and transparency. 

• Develop accessible AI-driven tools (e.g., Chesapeake-specific large language models) for 

scenario planning to help identify management priorities. 

 

3. Promote transparency and engage managers and stakeholders 

• Advance explainable AI/ML and uncertainty protocols so that results are interpretable, 

credible, and trusted.  

• Couple AI/ML with tailored data visualizations to improve interpretability and use at 

broader scales.  

• Foster engagement of managers and decision makers at all stages of AI/ML projects to 

ensure products align with management priorities and can be effectively applied. 

• Use tailored communication strategies to translate AI/ML insights into actionable 

guidance for restoration planning. 

 

4. Build collaboration and capacity 

• Establish an AI/ML network (e.g., Chesapeake Bay Research with Artificial Intelligence 

and Networking or “Ches-BRAIN”) to foster collaboration and to provide a clear place 

where managers and others can easily find and connect with AI/ML experts. 

• Encourage participatory events such as hackathons to spark innovation and strengthen 

cross-sector collaboration. 

• Invest in training and literacy programs so that scientists, managers, and decision makers 

can effectively use and interpret AI/ML tools and outputs.  
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Introduction 

The Chesapeake Bay and its watershed (hereafter “Chesapeake Bay region”) have been the 

focus of extensive restoration efforts for several decades. These restoration efforts are 

guided by the Chesapeake Bay Watershed Agreement (Chesapeake Executive Council 

2014), which outlines 10 goals and 31 measurable outcomes. The Chesapeake Bay is 

globally recognized as a model for coastal restoration due to long-term investments in 

monitoring, modeling, and research by the Chesapeake Bay Program (CBP) partnership. 

These extensive monitoring data span both tidal and non-tidal regions of the Chesapeake 

Bay and cover various temporal and spatial scales. Such data provide valuable insights into 

ecosystem changes and help generate hypotheses about environmental drivers. However, 

such data are often complex and difficult to interpret. As a result, new approaches to extract 

and communicate meaningful patterns could advance scientific understanding and support 

ongoing restoration efforts. 

 

Artificial intelligence (AI), particularly machine-learning (ML), has become a 

transformative tool in environmental research, especially for extracting elusive patterns 

from large, complex datasets that traditional analysis methods can fail to detect. These AI 

techniques have gained widespread adoption across various disciplines, including ecology, 

hydrology, and environmental science (Shen, 2018; Xu and Liang, 2021). In the context of 

the Chesapeake Bay region, AI/ML techniques have been increasingly applied to analyze 

complex dynamics, identify environmental drivers, and predict conditions in unmonitored 

areas. For example, recent research has used AI/ML to study chlorophyll a (Yu and Shen, 

2021), dissolved oxygen (DO) (Yu et al. 2020), nutrient limitation (Zhang et al. 2022), 

water-quality standards (Zhang et al. 2025), and biological stream health (Maloney et al. 

2022b).  

  

The CBP partnership, particularly its Scientific and Technical Advisory Committee 

(STAC), has increasingly recognized the potential of using AI/ML for improving decision 

support towards better Bay watershed management. Researchers from institutions in the 

Bay watershed, such as the University of Maryland Center for Environmental Science 

(UMCES), Virginia Institute of Marine Science (VIMS), Pennsylvania State University 

(PSU), and Johns Hopkins University (JHU), have proposed AI/ML-focused sessions at the 

2024 Chesapeake Community Research Symposium (Chesapeake Community Research 

Symposium 2024), signaling growing interest in these approaches. Furthermore, UMCES 

has recently launched the Chesapeake Global Collaboratory (UMCES 2023), a new 

initiative that aims to harness big data and AI/ML tools to accelerate the process of 

identifying cost effective, time efficient, and robust solutions for addressing complex 

environmental challenges. These developments underscore how the exploration of AI/ML 

capabilities can support ongoing restoration and management of the Bay and its watershed. 

  

This STAC workshop brought together federal, state, and academic partners to synthesize 

the current state of AI/ML applications and identify gaps in Chesapeake Bay research and 

management. The workshop focused on three main objectives: 

1. Synthesize recent AI/ML applications and lessons learned in both tidal and non-tidal 

areas of the Chesapeake Bay region. 

https://www.chesapeakebay.net/what/what-guides-us/watershed-agreement
https://ccmp2024.chesapeake.org/
https://www.umces.edu/chesapeake-global-collaboratory
https://www.umces.edu/chesapeake-global-collaboratory
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2. Identify challenges and gaps in applying AI/ML approaches to Chesapeake Bay 

data. Such challenges and gaps may include data limitations, harmonization issues, 

ineffective communication of AI/ML insights, and a lack of coordination among 

research and management institutions. 

3. Develop recommendations and identify opportunities for leveraging AI/ML 

approaches to address critical management issues and foster successful restoration 

across the Chesapeake Bay region. Key areas of focus may include generating new 

information to support watershed management, delivering AI/ML-generated insights 

to managers in a clear and actionable way, and fostering greater collaboration 

among stakeholders within the CBP partnership. 

 

This STAC workshop serves as a critical step in advancing the integration of AI/ML 

techniques into research and management across the Chesapeake Bay region. By 

synthesizing current applications, identifying challenges, and exploring new opportunities, 

the workshop provided valuable insights and recommendations for better leveraging AI/ML 

to support restoration efforts in the Bay. These insights will help inform data-driven, 

science-based decision making aligned with the goals and outcomes of the Chesapeake Bay 

Watershed Agreement (Chesapeake Executive Council 2014). 
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Presentation Summaries 

This section summarizes presentations at the workshop. Slides for the presentations are available 

on the STAC Leveraging Artificial Intelligence and Machine-learning to Advance Chesapeake 

Bay Research and Management: A review of status, challenges, and opportunities workshop 

webpage, accessible using the following link.  

 

The workshop was organized into three main sessions: (1) recent AI/ML applications and lessons 

learned, (2) challenges and gaps in applying these approaches to Chesapeake Bay data, and (3) 

opportunities and recommendations for advancing the use of these approaches. Descriptions of 

each session, including presentation topics and speakers, are provided below. 

Session I: Lessons Learned from AI/ML Applications in the Chesapeake Bay Watershed  

This session synthesized recent applications of AI/ML to Chesapeake Bay research, spanning 

both tidal and non-tidal systems. Presenters described the objectives of their studies, the 

reasoning behind the choice of AI/ML methods, and the novel insights these approaches 

provided. Discussion also emphasized how these findings have already contributed (or could 

contribute) to advancing restoration of Chesapeake Bay tidal and non-tidal regions in support of 

the Watershed Agreement’s goals and outcomes.  

Invited presentations in this session included:  

• Gary Shenk (USGS) – Overview of Chesapeake Bay Restoration: CBP Goals & 

Outcomes 

• Alison Appling (USGS) – Introductory Overview of AI and ML 

• Kelly Maloney (USGS) – Literature Summary of Watershed and Living Resources 

Studies Involving AI/ML 

• Jian Shen (VIMS) – Literature Summary of Estuarine and Living Resources Studies 

Involving AI/ML 

• Stephanie Schollaert Uz (NASA) – AI/ML Integration of Satellite Remote-sensing: Data 

Harmonization Challenges and Gaps 

Overview of Chesapeake Bay Restoration: CBP Goals & Outcomes – Gary Shenk (USGS) 

The CBP is a collaborative partnership among various stakeholders – including government 

agencies, environmental professionals, and scientists – aimed at restoring and maintaining the 

health of the Chesapeake Bay. It is guided by agreements between state and federal partners, 

including the most recent 2014 Chesapeake Bay Watershed Agreement (Chesapeake Executive 

Council 2014) which established five major themes: Abundant Life, Clean Water, Conserved 

Lands, Engaged Communities and Climate Change. Ten total goals were established under the 

themes, each with specific outcomes and totaling 31 separate outcomes to be used to determine 

progress. Presently, the CBP has identified 230 science needs that aim toward developing 

necessary support to underpin successful management achievement of the themes, goals and 

outcomes.  

 

Although AI and ML technologies are being explored to support the CBP’s restoration efforts, 

particularly in areas like land-use mapping, habitat mapping, nutrient transport analysis, and 

submerged aquatic vegetation detection from satellite imagery, only two of the 230 science needs 

explicitly call for AI/ML methods. However, the CBP is still in the early stages of understanding 

https://www.chesapeake.org/stac/events/leveraging-artificial-intelligence-and-machine-learning-to-advance-chesapeake-bay-research-and-management-a-review-of-status-challenges-and-opportunities/
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how AI can be fully leveraged for improving decision-support on increased effectiveness with 

targeting, planning, and implementation towards addressing its restoration priorities. In general, 

many of the scientific problems involve understanding relationships between human systems, 

environmental resources and external factors, and generating relevant data describing those 

systems. 

 

The CBP is focused on determining and implementing appropriate management strategies; 

therefore, AI/ML tools that make short-term predictions or are not interpretable may be of 

limited use. Management questions require accurate mapping of the past and models that can 

confidently predict the effects of different management options. It is expected that the 

participants in this workshop would identify areas to successfully apply AI/ML techniques that 

could be used as a tool to address management priorities. 

Introductory Overview of AI and ML – Alison Appling (USGS) 

Alison Appling presented a broad overview of AI and ML as they apply to CBP research needs. 

The presentation included definitions and relationships among AI, ML, and major classes of 

methods including tree-based machine-learning methods, neural networks, deep learning, 

generative AI, automatic ML selection, and eXplainable AI. A taxonomy of ML-suitable tasks 

was presented, including but not limited to the four major categories of classification, clustering, 

regression, and dimensionality reduction. 

A light analysis of the STAC literature compilation of Chesapeake Bay ML applications was 

then used to direct a deeper dive into several major ML methods: tree-based ML (decision trees, 

random forests, and gradient boosting); neural networks (neurons, backpropagation, gradient 

descent, influential neural network architectures); differentiable modeling that hybridizes neural 

networks with process-based components; and SHapley Additive exPlanations (SHAP) as a 

popular Explainable AI method. An overview of terminology and scope is provided in Figure 1, 

which uses a Venn diagram to show how AI artificial intelligence encompasses ML, neural 

networks, DL, and generative AI. 

The presentation addressed strategies for selecting an ML method, which could include 

following published guides, employing automatic ML selection tools, or prioritizing between 

accuracy and interpretability to fit the given research need. Lastly, the presentation covered some 

opportunities to leverage generative AI – either directly, in environmental modeling, or 

indirectly, by applying large language modeling tools to support the processes of developing new 

ML applications or exploring the scientific literature.  
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Figure 1. Conceptual Venn diagram illustrating the relationship among artificial intelligence (AI), machine-learning, neural 

networks, deep learning, and generative AI.  

Literature Summary of Watershed and Living Resources Studies Involving AI/ML – Kelly 

Maloney (USGS) 

Synthesizing AI/ML literature as it pertains to living resources in the watershed is fraught with 

many obstacles including different terminology, different ecological disciplines, studies often 

being published in non-ecological outlets, differing extent of studies, and a rapidly evolving 

field. Given these obstacles, the presentation opened by focusing on three key methodological 

papers: the Phillips et al. (2006) paper on maximum entropy, the Cutler et al. (2007) paper on 

random forests, and the Elith et al. (2008) paper on boosted regression trees. All three methods 

have seen a dramatic increase in application since the date of publication together totaling, as of 

February 5, 2025 (Scopus query), over 2,000 citations per year. A word cloud analysis for each 

of these papers indicated that “species distribution”, “habitat”, “climate”, “spatial”, and 

“prediction” were routinely mentioned in titles of the most recent 2,000 publications citing each 

paper. 

 

The presentation then highlighted studies focused on species distribution and habitat assessments 

at either a regional/continental or Chesapeake Bay watershed scale. Random forest machine-

learning algorithms were used for predicting firefly presence/absence and relative abundance in 

the eastern United States (McNeill et al. 2024), presence/absence of fish species in the 

Chesapeake Bay watershed (Maloney et al. 2022b), and stream health as measured by benthic 

macroinvertebrates within the contiguous United States (Hill et al. 2017) and Chesapeake Bay 

region (Maloney et al. 2022a). This section ended with a case study that used double ML (from 

the field of causal inference) to predict bird species abundance and population trends across 

North America and how such a method can reduce confounding bias (Fink et al. 2023). 

Next, the presentation highlighted a timeline of key AI/ML cases studies implementing AI/ML 

techniques within the Chesapeake Bay watershed (Table 1). The presentation ended with 

highlighting several studies between ecologists and statisticians (e.g., Weinhold et al. 2020 and 
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Schmid et al. 2011) emphasizing that building such cross-disciplinary collaborations to leverage 

both field’s expert knowledge can strengthen our understanding of the system and with a list of 

some key review paper citations.  

Reference Target Methods 

Goetz et al. 2007 Bird species richness and 

abundance 

Regression tree vs traditional 

approaches 

Maloney et al. 2009 Stream health from benthic 

macroinvertebrates 

Comparison of regression trees, 

random forest, conditional 

regression trees and conditional 

random forest 

McCabe 2019 Presence/absence of blue catfish Boosted regression tree 

Merriam et al. 2019 Brook trout occupancy Boosted regression tree 

Woods et al. 2023 Fish community change with 

changing environmental conditions 

Random forest 

Table 1. Timeline of Chesapeake Bay watershed studies using AI/ML approaches and involving living resource and habitat 

endpoints. 

In conclusion the presentation provided numerous examples of how AI/ML has been used to 

explore living resources both within and outside the Chesapeake Bay watershed. The majority of 

example have used AI/ML in a prediction framework, but recent work is incorporating 

interpretable AI and causal inference techniques. 

Literature Summary of Estuarine and Living Resources Studies Involving AI/ML – Jian Shen 

(VIMS) 

ML has emerged as a valuable modeling tool for time-series forecasting of environmental state 

variables. Unlike traditional deterministic modeling approaches, ML offers a cost-effective 

alternative that leverages the full potential of observational data. In the Chesapeake Bay region, 

ML has been applied across a wide range of studies, encompassing supervised and unsupervised 

learning, neural networks, and deep learning (DL) techniques. Applications include forecasting 

storm surge, surface waves, and saltwater intrusion, as well as ecosystem-related modeling such 

as predicting harmful algal blooms, estimating primary production, forecasting DO levels in the 

Bay’s main channel, and estimating hypoxia volume. These efforts have utilized observational 

data, model-generated outputs, satellite imagery, and hybrid approaches that integrate numerical 

models with empirical observations. These studies have demonstrated and expanded the practical 

potential of ML in coastal and estuarine science. 
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ML models have shown strong performance in forecasting storm surge and surface waves in the 

Bay, which are primarily driven by wind and governed by relatively well-understood physical 

dynamics. However, ecological applications pose greater challenges. Many ML models rely 

heavily on in situ observations, such as salinity, temperature, nutrient concentrations, and 

stratification, to predict ecological variables at fixed locations. This limits their utility for 

scenario-based analyses that aim to answer "what-if" questions. Applying ML to simulate daily 

variations in two or three dimensions remains a significant challenge. Although some models can 

reproduce observed state variables with reasonable accuracy, they may fail to capture the 

underlying biogeochemical processes. For example, a model might simulate DO levels but fail to 

reflect changes resulting from nutrient load reductions. Nonetheless, integrating numerical model 

outputs with observational data during training offers a promising path forward. The rapid 

advancement of ML technologies is creating new opportunities to simulate the environment and 

ecological state variables, such as salinity, temperature, and DO in two and even three 

dimensions, improving both spatial coverage and predictive capability. 

AI/ML Integration of Satellite Remote-sensing: Data Harmonization Challenges and Gaps – 

Stephanie Schollaert Uz (NASA) 

This presentation reviewed applications of satellite remote-sensing with AI/ML artificial 

intelligence and machine-learning for Chesapeake Bay living resources, highlighting both 

opportunities and limitations. The studies referenced demonstrated fused radar-optical 

classification of tidal wetlands (Lamb et al. 2021), SAV mapping using WorldView-2 imagery 

and deep convolutional neural networks (Coffer et al. 2023), chlorophyll a prediction from 

Visible Infrared Imaging Radiometer Suite (VIIRS, Yu et al. 2022), satellite data combined with 

machine-learning models (Yu et al. 2022), and simultaneous retrieval of chlorophyll a, turbidity 

(Pahlevan et al. 2022), and colored dissolved organic matter (CDOM) from Landsat, Sentinel-2, 

and Sentinel-3 using mixture density networks (Pahlevan et al. 2022). For water clarity, the 

DEEP-VIEW framework integrates Moderate Resolution Imaging Spectroradiometer (MODIS), 

Ocean and Land Color Instrument (OLCI), and VIIRS (Schollaert Uz et al. 2024), and additional 

approaches apply non-Euclidean water distance interpolation for mapping diffuse attenuation 

(Schollaert Uz et al. 2024 & Clark et al. 2024). Hypoxia forecasting was conducted with 

convolutional and long short-term memory (LSTM) networks trained on satellite-derived 

reflectance and hydrodynamic model fields (Zheng et al. 2024). An example SAV classification 

result is shown in Figure 2.  
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Figure 2. (a) Submerged aquatic vegetation (SAV) classification and extent using WorldView-2 imagery (1.84-m resolution, six 

visible bands) for Mobjack Bay, VA, on May 4, 2015, overlaid with reference data delineating seagrass percent cover obtained 

from Virginia Institute of Marine Science (VIMS) in May through November 2025. (b) Results of an image classification with 

classes for land, no data, SAV, and no SAV. Source: Coffer et al. 9(2023).  

The presentation identified key satellite remote-sensing opportunities and challenges for the 

Chesapeake Bay, including consideration of sun glint, and atmospheric interference; land 

adjacency effects from narrow waterways; optically complex waters; and tradeoffs between 

spatial resolution and revisit frequency. Although aquatic sensors provide high signal-to-noise 

ratios (SNR) and daily coverage at coarse resolution (300 m–1 km), terrestrial sensors offer finer 

spatial resolution (10–30 m) at lower SNR and longer revisit intervals. Validation remains 

limited by the small number of above-water radiance measurements. 

 

Limitations for submerged aquatic vegetation (SAV) classification include requirements for 

image acquisition at consistent tidal stage; frequent missing data due to clouds; signal attenuation 

with water depth causing mischaracterization of deep edges; and multispectral imagery being 

insufficient for seagrass species identification. Hyperspectral imagery can distinguish plant types 

through pigment discrimination but is not yet routinely available at high spatial resolution. 

 

Ongoing interagency work connects satellite providers and users to address runoff, water-quality, 

algal blooms, carbon fluxes, and flooding. Recent deployments include AErosol RObotic 

NETwork- Ocean Color (AERONET-OC) (2021) and hyperspectral spatial-spectral 

understanding network (HyperNet) (2023) for calibration/validation. Priorities include improving 

atmospheric correction, spectral libraries, and phytoplankton classification to fill monitoring 

gaps. Despite limitations, satellite data fill a critical data gap and provide an important source of 
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wide-spatial data coverage. Ground-truth data will always be needed to calibrate satellite data, 

the combination of both offers better data coverage for improved monitoring and prediction. 

Session II: Identify the Challenges and Gaps in Applying AI/ML Approaches to 

Chesapeake Bay Data 

This session examined the major challenges and gaps that hinder the application of AI/ML 

approaches to Chesapeake Bay tidal and non-tidal data. Presenters highlighted issues such as 

limited or inconsistent datasets, barriers to harmonizing information across sources, and the need 

for greater expertise in algorithm design and implementation. The discussion also raised 

concerns about the lack of accessible software code for replication or adaptation, the difficulty of 

communicating and interpreting AI/ML outputs, and the need for stronger coordination among 

researchers and managers within the CBP partnership. Invited presentations in this session 

included:  

• Patrick Bitterman (Kent State University) – GeoAI and Social Systems Modeling  

• Mike Evans (Chesapeake Conservancy) – Integrated AI Models to Forecast Land-use 

Change 

• Shuyu Chang (PSU) – Advances in Water-quality Predictions: Datasets and Learning 

• David Parrish (VIMS) – Modeling Light Conditions in the York River Estuary by 

Anchoring Satellite Imagery with High-Frequency In-Situ Observations 

• Matthew Cashman (USGS) – Physical Habitat is More Than a Sediment Issue: A Multi-

dimensional Habitat Assessment Indicates New Approaches for River Management 

• Taylor Woods (USGS) – Observed and Projected Functional Reorganization of Riverine 

Fish Assemblages from Global Change 

• Jenn Fair (USGS) – Images to Info: the USGS Flow Photo Explorer 

• Sean Emmons (USGS) – Leveraging Machine-learning and Expert Knowledge to 

Unravel the Complexities of Multiple Freshwater Ecosystem Stressors 

GeoAI and Social Systems Modeling – Patrick Bitterman (Kent State University) 

This presentation detailed ongoing research that integrates spatially explicit machine-learning 

approaches with agent-based models of human decision making to better represent feedbacks in 

social-ecological systems. Drawing from ongoing National Science Foundation-funded research 

(CNH2-L: #2009248), Bitterman (Kent State University) presented research combining 

Geospatial Artificial Intelligence (GeoAI methods) (e.g., random forest, eXtreme Gradient 

Boosting or XGBoost) with structured data on land-use planning and best management practice 

(BMP) implementation to model scenario-based outcomes under Chesapeake Bay Phase 3 

Watershed Implementation Plan inputs. Model outputs suggest strong spatial and scalar path 

dependencies in management trajectories, highlighting how past implementation patterns shape 

future land-use and conservation outcomes at county and local scales. These model results are 

supported by results of qualitative interview results and document analysis. 

A key contribution of this work is the development of a hybrid modeling framework that couples 

GeoAI methods with more traditional social systems modeling approaches to reflect regulatory 

feedbacks and decision making processes. The presentation emphasized the importance of 

incorporating fine-scale social data (e.g., planning documents, local physical and social context) 

to improve predictive accuracy and system understanding. The results of this work demonstrate 
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that management decisions are not only reactive to environmental targets and local conditions, 

but are also strongly conditioned by prior choices, institutional arrangements, and socio-political 

context – insights that could advance the CBP modeling system’s treatment of human dynamics. 

Integrated Deep-Learning Models to Forecast Land-use Change – Mike Evans (Chesapeake 

Conservancy) 

DL models are being applied to forecast land-use change in the Chesapeake Bay watershed, with 

objectives to account for variation in types of places, accommodate dynamic growth trajectories, 

and improve the surface of transition probabilities. The aim is to generate spatially and 

temporally accurate allocations of projected population and employment. Long Short-Term 

Memory (LSTM) networks capture temporal dynamics, and convolutional LSTMs incorporate 

spatial information to represent growth processes and refine transition probabilities. 

 

Socio-economic data are ordered through self-organizing and hierarchical self-organizing maps 

to classify counties and census blocks as “types of places.” Housing, population, employment, 

and migration time-series support these classifications. The Chesapeake Bay Land Change 

Model (CBLCM) integrates these data and methods to project residential and commercial 

development, along with farmland and forest conversion (Claggett et al. 2023; Figure 3). 

 

 
Figure 3. Predicted 2020 commercial development probabilities produced by the Chesapeake Bay Land Change Model 

(CBLCM), shown alongside observed 2020 development for comparison. The results illustrate the model’s application of deep 

learning to spatially allocate growth across census blocks (Claggett et al. 2023).  

Outputs include estimates of future households, population, and employment by wastewater 

service type (sewer vs. septic), with model performance evaluated using quantization and 

topographic error measures. Figure 4 shows predicted 2020 commercial development 

probabilities from the Chesapeake Bay Land Change Model alongside observed 2020 

development, illustrating how well the model captured actual growth patterns (Claggett et al. 

2023). 
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Figure 4. Predicted 2020 commercial development probabilities produced by the Chesapeake Bay Land Change Model, 

illustrating application of deep learning to allocate growth across census blocks (Claggett et al. 2023). 

Advances in Water-quality Predictions: Datasets and Learning Frameworks – Shuyu Chang 

(PSU) 

The Integrated Watershed Attributes and Nutrient Data (IWAND) dataset was introduced as a 

new benchmark resource to support large-scale predictions of riverine nutrient concentrations 

(Chang et al. 2025). IWAND builds on earlier efforts such as Catchment Attributes and 

Meteorology for Large-sample Studies (CAMELS; Addor et al. 2017) and the Catchment 

Attributes and Meteorology for Large-sample Studies – Chemistry (CAMELS-Chem; (Sterle et 

al. 2025) dataset; CAMELS-Chem augments the original CAMELS framework by adding 

stream-water chemistry and atmospheric deposition data for hundreds of U.S. catchments. 

IWAND incorporated in-situ records, catchment attributes, nutrient inputs, and climate forcing. 

Compared to prior benchmarks, IWAND offers more extensive records per site, broader spatial 

and temporal coverage, and improved representation of human influences, making it a robust 

foundation for developing and testing water-quality prediction models (Chang et al. 2025). 

 

The presentation emphasized the importance of large-sample hydrology and continental-scale 

(CONUS-wide) datasets for advancing water-quality modeling. By leveraging AI methods with 

extensive benchmark datasets, it is possible to improve predictive accuracy and enhance physical 

understanding of biogeochemical processes across diverse watersheds. These capabilities are 

particularly relevant for regional systems such as the Chesapeake Bay watershed, where 

advances in nutrient prediction can inform management strategies and support ongoing progress 

in water-quality restoration. 

Modeling Light Conditions in the York River Estuary by Anchoring Satellite Imagery with High-

Frequency In-Situ Observations – David Parrish (VIMS) 

This presentation described efforts to model light conditions in the York River estuary by 

anchoring satellite imagery with high-frequency turbidity data collected from the Chesapeake 

Bay National Estuarine Research Reserve (CBNERR)-VA/VIMS Dataflow platform (Virginia 

Estuarine & Coastal Observing System, 2025). The Dataflow system provides surface 
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observations every 2–3 seconds, producing thousands of turbidity measurements per day along 

vessel transects. These in-situ data were paired with PlanetScope satellite imagery (~3 m 

resolution, eight spectral bands, near-daily coverage since 2022). Atmospheric correction with 

ACOLITE was applied to generate surface reflectance inputs for modeling (Vanhellemont and 

Ruddick, 2016). 

 

Random forest regression was used to estimate turbidity from the eight surface reflectance bands 

(Figure 5; Parrish et al. 2025). This method handles non-linear relationships and interactions 

between variables without distributional assumptions. Block cross-validation was applied to 

reduce the influence of spatial autocorrelation by creating spatially independent training and 

testing subsets. Results from multiple sampling dates in 2023–2024 indicated that the random 

forest approach can reproduce turbidity patterns when anchored to dense in-situ measurements. 

 

 
Figure 5. Random forest regression with block cross-validation applied to estimate turbidity in the York River estuary from 

PlanetScope surface reflectance anchored with Chesapeake Bay National Estuarine Research Reserve (CBNERR)–VA/VIMS 

Dataflow measurements; Dataflow: 03/29/2023, 05/21/2024, 05/22/2024, 06/20/2024, 06/21/2024 (modified from Parrish et al. 

2025). 

Next steps include expanding beyond turbidity to estimate the light attenuation coefficient (Kd), 

which forms the basis of Chesapeake Bay water clarity standards. This requires a hierarchical 

modeling approach linking Kd to turbidity, chlorophyll, and CDOM/salinity. Further work could 

include quantifying error in turbidity - and Kd-based estimates and addressing both spatial and 

temporal autocorrelation. Although PlanetScope imagery has only been available in the Bay 

since 2022, the data provide a freely available, high-resolution resource for advancing water 

clarity assessments.  

Physical Habitat is More Than a Sediment Issue: A Multi-dimensional Habitat Assessment 

Indicates New Approaches for River Management – Matthew Cashman (USGS) 

This presentation highlighted experiences, motivations, lessons learned, difficulties, and other 

considerations with ML from the recent publication, "Physical habitat is more than a sediment 
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issue: A multi-dimensional habitat assessment indicates new approaches for river management” 

(Cashman et al, 2024).  

 

Because physical habitat and sediment are major stressors for stream health in the Chesapeake 

Bay, the study predicted habitat quality across the watershed using metrics familiar to local 

stakeholders. It identified two distinct clusters and dimensions of physical habitat, highlighting 

related metrics and the hydrologic processes that support them. By overlaying these model 

outputs with models of suspended sediment and flow alteration, the study concluded that 

management actions focusing solely on restricting sediment - without addressing flows or in-

channel hydromorphic diversity - are unlikely to improve the habitat metrics. 

 

Challenges included the quality of source data - as the habitat metrics modeled were visually 

scored, semi-quantitative methods, with field-based uncertainty accounting for ~80% of the 

uncertainty in the final ML models. 

 

Most important, the presenter emphasized the challenges of using machine-learning methods to 

answer causal, cause-effect, and counterfactual questions. Referring to Judea Pearl’s causal 

hierarchy framework (Pearl 2009), the presenter explained that most traditional ML operates at 

the lowest, associative level of the hierarchy and struggles to answer causal questions accurately 

(Bareinboim et. al, 2022). Instead, causal inference techniques—designed specifically for causal 

questions such as cause-effect interventions and counterfactual thinking (e.g., outcomes under 

alternative scenarios)—are used in fields like public health, medicine, and econometrics and are 

now emerging in ecology, hydrology, and earth sciences (Kratzert et al. 2019). 

 

The presentation highlighted several subfields of causal inference, such as causal discovery and 

causal ML, listing various modeling methods and introductory textbooks on the topic. Despite 

his engagement with the field over the past year and a half, the presenter concluded that causal 

ML is rapidly developing and not all methods are suitable or have ‘off-the-shelf’ accessibility, 

staying up-to-date on developments in the field can help address future management questions. 

Observed and Projected Functional Reorganization of Riverine Fish Assemblages from Global 

Change – Taylor Woods (USGS) 

This presentation focused on two forecasting projects that apply ML to assess ecological and 

hydrologic changes under scenarios of climate and land-use change scenarios. The ecological 

component used random forest models to predict habitat suitability of fish functional groups, 

classifying abundances as low, medium, or high across multiple future scenarios. Results 

suggested that species with generalist, warm-water, fine-substrate, and slow-water traits are 

projected “winners,” whereas cold-water, clean-substrate, fast-water taxa are likely “losers” 

(Figure 6).  
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Figure 6. Ecology model results showing projected “winner” and “loser” traits of fish communities under climate and land-use 

change scenarios.  

The hydrologic component evaluated how climate and land-use change will affect flow regimes. 

Random forests with temporally lagged predictors performed similarly to or better than neural 

networks, demonstrating predictive power while maintaining interpretability. However, data 

limitations, particularly small biological sample sizes, pose constraints, and uncertainty in 

applying ML outputs to ecological models remains an ongoing challenge. The work highlights 

both the promise and limitations of ML approaches for Chesapeake Bay forecasting applications.  

Images to Info: the USGS Flow Photo Explorer – Jenn Fair (USGS) 

The USGS Flow Photo Explorer (FPE) Tool is a web platform that supports a stream monitoring 

network for small streams (https://www.usgs.gov/apps/ecosheds/fpe). It features a data system 

that allows users to upload images collected with low-cost trail cameras, an annotation tool for 

allowing users to rank pairs of images, and a deep learning model that learns from these 

annotations to predict a relative streamflow hydrograph. The Flow Photo Explorer (FPE) 

platform currently has more than 350 users from state, federal and tribal agencies, universities, 

non-governmental organizations, local municipalities, and other private organizations and 

individuals. The FPE data system currently stores over 6 million images and over 300,000 

annotations, and hosts approximately 70 models predicting streamflow dynamics. A recent 

evaluation of deep learning model performance indicates that the FPE data system will be useful 

as a low-cost, non-contact method for monitoring streamflow dynamics in under-monitored, 

dynamic and particularly vulnerable headwater streams (Goodling et al. 2025).  

https://www.usgs.gov/apps/ecosheds/fpe/#/
https://www.usgs.gov/apps/ecosheds/fpe/#/
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Leveraging Machine-learning and Expert Knowledge to Unravel the Complexities of Multiple 

Freshwater Ecosystem Stressors – Sean Emmons (USGS) 

This presentation described the use of AI/ML to evaluate multiple interacting stressors on 

freshwater ecosystems in the Chesapeake Bay watershed. The overarching research question 

addressed was: What are the key stressors affecting stream health, and do these vary regionally? 

Goals included identifying hierarchical effects of stressors on benthic macroinvertebrate 

indicators, predicting biological responses under different stressor conditions, and developing a 

spatial prioritization framework to support watershed conservation and restoration. 

 

The approach combines expert knowledge with Bayesian network learning to identify driver–

stressor–response relationships. This involves structure learning, model averaging, and 

bootstrapped networks, while integrating prior ecological knowledge to constrain connections 

(Figure 7). By retaining only consistent relationships across bootstraps, the method improves 

confidence in causal links. The framework supports predictions of how biological metrics will 

change under stressor scenarios and enables prioritization of management actions such as 

resisting, directing, or accepting change. 

 

 
Figure 7. Conceptual hierarchy of stressors and biological responses in stream ecosystems, showing how temporal, spatial, 

climatic, land-use, and hydromorphic drivers influence instream habitat, water-quality stressors, and ultimately benthic 

macroinvertebrate responses.  

This work directly addresses needs identified by the CBP’s Stream Health Workgroup and 

illustrates the potential of causal discovery techniques to guide restoration planning under 

complex, interacting stressors. 



 

 18 

Session III: Develop recommendations and identify opportunities for harnessing the power 

of AI/ML approaches to address Chesapeake Bay issues 

This session focused on developing recommendations and identifying opportunities to expand 

the role of AI/ML in restoration of Chesapeake Bay tidal and non-tidal regions. Participants 

discussed where the CBP partnership could benefit most from these approaches, emphasizing 

their potential to generate new insights and support more efficient decision making. The group 

also considered strategies for delivering AI/ML outputs to managers in clear and actionable 

ways, along with guidelines for standardizing and streamlining how AI/ML methods are applied 

to monitoring data. Finally, the session highlighted opportunities to strengthen collaboration and 

build synergies among partners to accelerate the integration of AI/ML into Bay science and 

management. Invited presentations in this session included:  

• Chaopeng Shen (PSU) – State-of-the-Art AI & Physics-Informed ML in Hydrology and 

Water-quality: Insights and synergies  

• Dong Liang (UMCES), Chaopeng Shen (PSU), Vandana Janeja (UMBC), Kelly Maloney 

(USGS), Robert Sabo (EPA), Alison Appling (USGS) – AI/ML Community 

Development (Panel) 

State-of-the-Art AI & Physics-Informed ML in Hydrology and Water-quality: Insights and 

Synergies – Chaopeng Shen (PSU) 

Chaopeng Shen presented advances in integrating ML with process-based hydrologic and water-

quality models. Traditional neural networks, such as LSTMs, have shown predictive skill for 

variables like dissolved oxygen (DO) and nutrients but face limitations in interpretability, 

transferability, and performance in data-scarce or extreme conditions. To address these gaps, 

Shen’s group developed differentiable parameter learning (dPL), which links neural networks 

with governing equations to constrain learning. Their framework is illustrated in Figure 8, which 

shows two dPL workflows alongside a traditional calibration approach.  
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Figure 8. (a) A deep learning model is trained to mimic the outputs of a process-based model (PBM). This step is optional 

because one may also directly implement the model in a DL platform. (b) Workflow of the first differentiable parameter learning 

(dPL) option for deep neural network gA: parameters are inferred by a network (in our case, a separate LSTM network) based on 

auxiliary attributes. These parameters are then sent into the PBM, whose outputs are compared to the observations to calculate 

the loss (the difference between objective function and observation). (c) Workflow of the second dPL option for deep neural 

network gZ: historical observations (meteorological forcings and observed responses) are additional inputs to the parameter 

estimation network. (d) Traditional site-by-site parameter calibration framework. Reproduced from W. Tsai et al. (2021). 

Shen emphasized the potential for these methods in Chesapeake Bay water-quality modeling, 

where they can provide scale-relevant predictions, link landforms and management practices to 

outcomes, and incorporate uncertainty quantification. He also highlighted spectral convolutional 

Fourier Neural Operators (SC-FNOs) as a promising tool for solving partial differential 

equations (PDEs) orders of magnitude faster than traditional models, with improved sensitivity 

for parameter inversion. These approaches offer transferable, interpretable, and efficient tools for 

large-scale forecasting and management support.  

Panel: AI/ML Community Development – Dong Liang (UMCES), Chaopeng Shen (PSU), 

Vandana Janeja (UMBC), Kelly Maloney (USGS), Robert Sabo (EPA), Alison Appling (USGS) 

A powerful variety of highly predictive AI/ML models can be readily applied to improve the 

CBP’s understanding of fundamental processes that drive watershed and estuarine conditions. 

With the large diversity of potential applications, however, the path forward for effectively 

leveraging AI/ML across scales and disciplines is still being defined. One key motif that 

emerged when discussing a path forward was the need for meaningful partner engagement 

throughout the conception, development, and application of AI/ML products, a process known as 

co-production, in which technical tools and analyses are created collaboratively with end users to 

ensure their relevance and usability. By working with targeted CBP workgroups or other key 

stakeholders in the Bay watershed, research groups looking to inform the CBP can better define 

what key questions need to be addressed as well as the key research products that stakeholders 

need to make the research actionable. 

 

During these discussions, questions about spatial and temporal scale, endpoint(s) of interest, the 

desired predictive ability vs. explainability, and others were explored. In these conversations 

with Bay partners, the panel discussion highlighted an opportunity to identify new and cultivate 

existing synergies across research disciplines and management domains. Before proceeding with 

AI/ML analyses, it would be helpful to determine what enhancement and contribution the AI/ML 

application can make to the current suite of existing models and tools (besides only being more 

predictive) and identify collaborators who can assure effective and accurate integration of 

environmental information into the models. AI/ML’s looser model structure, ability to better 

handle some co-linearities across predictors, large information needs, and ability to accurately 

describe multiple environmental phenomena allow it to integrate multiple predictor datasets that 

span environmental disciplines. These characteristics serve as a platform for promoting inter-

disciplinary collaborations and stakeholder engagement. Also, improvements in explainable 

AI/ML features, like the use of Shapley values, partial dependent plots, and other metrics/tools, 

highlight the opportunity for these models to be more wholly interpreted by inter-disciplinary 

teams. The final key points that was highlighted by the panel discussion were the need to the 

availability of model code and the production and availability of needed predictor-response 

variable datasets, the latter of which sounds conceptually simple but is computationally difficult.  
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Providing access and packaging the CBP partnership’s preferred predictor data (e.g., Chesapeake 

Assessment Scenario Tool (CAST) matched to Nontidal Monitoring (NTN) network stations and 

available at NHD+ scale) will ensure AI/ML research groups are using the best available, locally 

tailored data that the CBP has approved to track progress. Developing computationally efficient 

methodologies to adjust other non-CBP datasets to scales of interest will be key as well because 

AI/ML can take advantage of other ancillary environmental information from OPEN Library and 

other open data sources (e.g., Stream-Catchment (STREAMCAT) dataset). In closing, the panel 

discussion highlighted that AI/ML can be leveraged to help communities understand drivers of 

local water-quality and habitat while also providing inference into broader watershed and 

estuarine ecological conditions - conditions that can be restored through partner engagement.  
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Breakout Group Discussions 

On the second day of the workshop, participants took part in structured breakout sessions 

designed to explore the workshop’s three objectives in greater depth. Each group (including one 

that met virtually) discussed a common set of guiding questions, with the aim of identifying 

shared themes, key challenges, and potential paths forward. The conversations concluded with 

brief report-outs to the full workshop audience.  

 

The guiding questions for these breakout sessions were:  

• Objective 1  

o In what ways can AI/ML approaches be applied (or have already been applied) to 

issues relevant to Chesapeake Bay restoration?  

o What advantages and limitations do AI/ML methods present compared to more 

traditional approaches?  

• Objective 2  

o What challenges or gaps have you experienced when applying AI/ML in the 

Chesapeake Bay context (or in related fields)?  

o What strategies have you used, or could be used, to address these challenges?  

• Objective 3  

o What are the primary barriers to broader adoption of AI/ML in Chesapeake Bay 

research and management?  

o What kinds of forums, workshops, or working groups could help foster 

collaboration among AI/ML researchers, Bay scientists, and resource managers? 

 

The following sections summarize the discussions across groups for each objective, highlighting 

common observations, areas of divergence, and opportunities for further research and 

collaboration; full breakout group responses are available to review in Appendix D.  

Objective 1 

Breakout groups identified a range of current and potential applications of AI/ML relevant to 

Chesapeake Bay restoration. Examples included tracking agricultural BMPs on croplands, 

recalibrating land-use layers in Pennsylvania, evaluating BMP performance, informing 

swimming advisories, and predicting habitat conditions. The USGS Flow Photo Explorer Tool 

was cited as an example of using ML to monitor streamflow dynamics in small systems, 

including stormwater BMPs. Groups also noted that AI/ML can be applied in intermediate steps 

of modeling workflows (e.g., preparing data for integration), not just in end-point predictions. 

 

Participants emphasized that AI/ML techniques are well suited to integrating diverse datasets 

such as satellite imagery, in-situ monitoring, and high-frequency sensor data. These approaches 

are scalable and robust, with the ability to capture non-linear and complex interactions. Models 

trained on national-scale datasets have in some cases outperformed those built strictly on 

Chesapeake Bay-focused data. However, groups agreed that excessive diversity in training data 

can dilute meaningful signals, and that a moderate level of diversity is most effective to avoid 

overfitting. AI/ML can also support data harmonization and fill spatial and temporal gaps in 

existing monitoring. Incorporating non-Bay datasets was seen as a way to strengthen models by 

providing additional variability and context. 
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In comparison to process-based models, AI/ML methods are generally more flexible and 

accessible, requiring less reliance on domain-specific expertise. However, participants cautioned 

that these approaches should be viewed as complementary rather than as replacements for 

mechanistic models. Limitations identified included the lack of interpretability (“black box” 

issues), the potential for spurious inferences, and challenges in communicating results to 

managers and stakeholders. Quantification and transparent communication of uncertainty were 

noted as areas where AI/ML approaches currently lag behind traditional statistical methods. The 

rise of broadly available tools such as ChatGPT has increased public awareness of AI/ML but 

has also contributed to misperceptions about the capabilities and limitations of these approaches 

in technical and management contexts. 

 

Groups also discussed challenges related to data scale and uniformity. Excessive heterogeneity in 

training data can obscure signals, and narrowly focused datasets may reduce transferability. 

Debates also centered on the advantages of raw versus derived data as model inputs. The 

consensus was that careful attention to input data, supported by collaboration between data 

scientists and domain experts, is essential for producing reliable outcomes.  

 

Across discussions, participants reiterated that management decisions ultimately depend on 

understanding the effectiveness of practices. Although AI/ML approaches do not resolve all 

challenges, they were viewed as valuable tools for addressing persistent limitations in Bay 

restoration science and management. 

Objective 2 

Although the Chesapeake Bay is considered a data-rich system, groups identified several 

limitations that constrain the application of AI/ML. Key issues include mismatches in spatial and 

temporal scales between predictor and response variables, uneven temporal coverage, and gaps 

in problem-relevant data. Variation in data quality and ontology further reduces model reliability 

and transferability.  

 

Challenges with data cleanliness and harmonization were also noted. Inconsistent metadata, 

unclear coding standards, and lack of standardization complicate reproducibility. Model 

inception (where outputs from one model are used as inputs to another) was described as a risk 

because errors can be compounded. Participants also highlighted the danger of models producing 

apparently correct results for the wrong underlying reasons, underscoring the need for careful 

feature selection and evaluation. Practical solutions included dropping sites with missing data or 

enabling users to flag problematic records.  

 

Uncertainty was identified as one of the most difficult gaps to address. Current AI/ML methods 

have limited tools for quantifying and communicating uncertainty in ways that support 

management decisions. Visual and numerical approaches remain underdeveloped, which reduces 

confidence in model results.  

 

Several remedies were suggested. Continued investment in data harmonization was emphasized, 

with the NTN concentration data synthesis effort cited as a promising example. Expanding the 

Chesapeake Bay Data Hub to include both monitoring data (e.g., temperature, point sources) and 
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modeling outputs (e.g., CAST) was recommended. Other proposed approaches included the use 

of off-the-shelf image screening models, more systematic use of metadata (potentially supported 

by generative AI tools), and causal DL techniques to improve interpretability. A glossary of 

AI/ML terminology, already initiated within the CBP, was also cited as a step toward building 

shared understanding. 

Objective 3 

A central barrier to broader adoption of AI/ML in Chesapeake Bay applications is 

interpretability. Black-box models may undermine trust and can be difficult for managers to act 

upon, especially in a program that has long relied on process-based approaches. Developing 

interpretable methods and clearer approaches for communicating results were highlighted as 

important priorities.  

 

Broader acceptance is also shaped by public perceptions. Many audiences associate AI with 

media narratives that emphasize risks, which can create skepticism. Education and outreach, 

ranging from vocational training to student programs, were seen as important for building 

familiarity and demystifying these methods. Ideas such as community “hackathon” challenges 

were proposed as ways to encourage engagement and identify key response variables.  

 

Institutional and data-related barriers remain significant. AI/ML researchers and process-based 

model developers often work in disciplinary silos, limiting collaboration. Engaging CBP goal 

implementation teams (GITs) and workgroups early was recommended to align AI/ML efforts 

with management priorities. Participants also emphasized that strong national-scale models must 

be paired with fine-scale local monitoring to capture variability and transferability.  

 

Avenues for advancing collaboration were identified. Pairing AI/ML with data visualization was 

recommended to make complex results more accessible. A dedicated informal network, 

tentatively called Ches-BRAIN (Chesapeake Bay Research with Artificial Intelligence and 

Networking), was suggested as a forum for researchers, modelers, and managers. Existing 

venues such as the Chesapeake Community Research Symposium (CCRS), HydroML 

Symposium, the Association of Mid-Atlantic Aquatic Biologists (AMAAB), and future STAC 

workshops were all viewed as important platforms. The Remote-sensing Workgroup was 

identified as a place where AI/ML applications could be introduced directly into CBP activities. 

Participants also discussed the potential value of a “front desk” chatbot or curated AI system, 

modeled after the historic Chesapeake Community Monitoring Network catalogue (Chesapeake 

Research Consortium, 2022), to help managers and researchers navigate the CBP’s extensive 

data and modeling resources. Overall, participants agreed that adoption of AI/ML will depend 

not only on technical progress but also on improving transparency/trust and cross-disciplinary 

collaboration within the Bay community.  
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Recommendations 

1. Strengthen data infrastructure and integration for AI/ML applications 

• Harmonize spatial and temporal datasets across programs and ensure consistent metadata. 

• Leverage diverse datasets, including satellite, in-situ, and high-frequency data, for use in 

modeling and monitoring applications and filling water-quality data gaps. 

• Design monitoring and data processing efforts so that resulting products are problem-

relevant and can be readily incorporated into AI/ML workflows. 

• Build harmonized response and predictor datasets and develop example use cases to 

guide widespread AI/ML applications. 

 

2. Leverage AI/ML for restoration of Chesapeake Bay tidal and non-tidal regions and 

decision support 

• Use AI/ML to assess restoration practice effectiveness, evaluate progress, and identify 

drivers of change. 

• Enhance watershed and estuarine models by integrating AI/ML model outputs and 

insights. 

• Promote integration between AI/ML and traditional monitoring, analysis, and modeling 

approaches to enhance scientific credibility and transparency. 

• Develop accessible AI-driven tools (e.g., Chesapeake-specific LLMs) for scenario 

planning to help identify management priorities. 

 

3. Promote transparency and engage managers and stakeholders 

• Advance explainable AI/ML and uncertainty protocols so that results are interpretable, 

credible, and trusted.  

• Couple AI/ML with tailored data visualizations to improve interpretability and use at 

broader scales.  

• Foster close engagement of managers and decision makers at all stages of co-production 

with AI/ML projects to ensure products align with management priorities and can be 

effectively applied. 

• Use tailored communication strategies to translate AI/ML insights into actionable 

guidance for restoration planning. 

 

4. Build collaboration and capacity 

• Establish a Chesapeake Bay AI/ML network (e.g., Chesapeake Bay Research with 

Artificial Intelligence and Networking or “Ches-BRAIN”) to foster collaboration and 

provide a clear place where managers and others can easily find and connect with AI/ML 

experts. 

• Encourage development of participatory science events (e.g., hackathons) to spark 

innovation, strengthen cross-sector collaboration, and provide opportunities for students 

and early-career professionals to engage in applied problem solving. 

• Invest in training and literacy programs so that scientists, managers, decision makers, and 

students/job seekers can effectively use and interpret AI/ML tools and outputs, 

supporting workforce development pathways across the Bay watershed.  



 

 25 

References 

Addor N, Newman AJ, Mizukami N, Clark MP. 2017. The CAMELS data set: catchment 

attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences. 

21:5293–5313 

Bareinboim, E., J.D. Correa, D. Ibeling, and T. Icard. 2022. On Pearl’s hierarchy and the 

foundations of causal inference. In Probabilistic and causal inference: the works of Judea 

Pearl. Association for Computing Machinery. pp. 507-556 

Cashman, M.J., G. Lee, L.E. Staub, M.P. Katoski, and K.O. Maloney. 2024. Physical 

habitat is more than a sediment issue: A multi-dimensional habitat assessment indicates 

new approaches for river management. Journal of Environmental Management 374: 

123139. DOI: 10.1016/j.jenvman.2024.123139 

Chang, S.Y., D. Aboelyazeed, K. Sawadekar, D. Chavada, C. Shen, and K.J. Van Meter. 

Integrated Watershed Attributes, and Nutrient Database (IWAND): long-term, largescale 

nutrient samples and paired inputs for water quality modeling for the Contiguous United 

States (1980-2023). Manuscript in preparation 

Chesapeake Community Research Symposium. 2024. 2024 Chesapeake Community Research 

Symposium: Schedule of talks. Annapolis (MD): Chesapeake Bay Program. 6 p. 

Chesapeake Executive Council. 2014. Chesapeake Bay Watershed Agreement. Annapolis 

(MD): Chesapeake Bay Program 

Chesapeake Research Consortium, 2022, Models & data: Chesapeake Community 

Modeling Program web page, accessed October 21, 2025, at 

https://ches.communitymodeling.org/models-data/  

Claggett, P.R., L. Ahmed, F.M. Irani, S. McDonald, and R.L. Thompson. 2023. The Chesapeake 

Bay Land Change Model: Simulating future land use scenarios and potential impacts on water 

quality. Journal of the American Water Resources Association 59(6):1287–1312. 

https://doi.org/10.1111/1752-1688.13131 

 

Clark, J. B., S. Schollaert Uz, and T. Ames. 2024. Non-Euclidean Water Distance Based 

Interpolation for Increased Mapping of Coastal Water Clarity, Conference: IGARSS 2024 - 2024 

IEEE International Geoscience and Remote-sensing Symposium. DOI: 

10.1109/IGARSS53475.2024.10642967  

Coffer, M.M., D.D. Graybill, P.J. Whitman, B.A. Schaeffer, W.B. Salls, R.C. Zimmerman, 

V. Hill, M.C. Lebrasse, J. Li, D.J. Keith, J. Kaldy, P. Colarusso, G. Raulerson, D. Ward, 

and W.J. Kenworthy. 2023. Providing a framework for seagrass mapping in United States 

coastal ecosystems using high spatial resolution satellite imagery. Journal of Environmental 

Management 337: 117669. DOI: 10.1016/j.jenvman.2023.117669 

https://ches.communitymodeling.org/models-data/
https://doi.org/10.1111/1752-1688.13131


 

 26 

Cutler, D. R., T.C. Edwards Jr., K.H. Beard, A. Cutler, K.T. Hess, J. Gibson, and J.J. 

Lawler. 2007. Random forests for classification in ecology. Ecology 88:11. DOI: 

10.1890/07-0539.1 

Elith, J., J.R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression trees. 

J. Animal Ecology 77:4, 802-813. DOI: 10.1111/j.1365-2656.2008.01390.x 

Fink, D., A. Johnston, M. Strimas-Mackey, T. Auer, W.M. Hochachka, S. Ligocki, L. 

Oldham Jaromczyk, O. Robinson, C. Wood, S. Kelling, and A.D. Rodewald. 2023. A 

double machine-learning trend model for citizen science data. Methods in Ecology and 

Evolution 14:9, 2435-2448. DOI: 10.1111/2041-210X.14186 

Goetz, S., D. Steinberg, R. Dubayah, and B. Blair. 2007. Laser remote-sensing of canopy 

habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, 

USA. Remote-sensing of Environment 108:3, 254-263. DOI: 10.1016/j.rse.2006.11.016 

Goodling, P. J., J.H. Fair, A. Gupta, J.D. Walker, T. Dubreuil, M. Hayden, and B.H. 

Letcher. Technical note: A low-cost approach to monitoring relative streamflow dynamics 

in small headwater streams using time lapse imagery and a deep learning model, Hydrology 

and Earth System Sciences, 29, 6445–6460, https://doi.org/10.5194/hess-29-6445-2025, 

2025 

Hill, R. A., E.W. Fox, S.G. Leibowitz, A.R. Olsen, D.J. Thornbrugh, and M.H. Weber. 

2017. Predictive mapping of the biotic condition of conterminous US rivers and streams. 

Ecological Applications 27:8, 2397-2415. DOI: 10.1002/eap.1617 

Kratzert, F., D. Klotz, M. Herrnegger, A.K. Sampson, S. Hochreiter, and G.S. Nearing. 

2019. Toward improved predictions in ungauged basins: Exploiting the power of machine-

learning. Water Resources Research 55: 11344–11354. DOI: 10.1029/2019WR026065  

Lamb, B., M.A. Tzortziou, and K.C. McDonald. 2021. A Fused Radar–Optical Approach 

for Mapping Wetlands and Deepwaters of the Mid–Atlantic and Gulf Coast Regions of the 

United States. Remote-sensing 13(13), 2495. DOI: 10.3390/rs13132495 

Maloney, K. O., D.E. Weller, M.J. Russell, and T. Hothorn. 2009. Classifying the biological 

condition of small streams: An example using benthic macroinvertebrates. Journal of the North 

American Benthological Society 28:4, 869-884. DOI: 10.1899/08-142.1 

Maloney, K. O., K.P. Krause, M.J. Cashman, W.M. Daniel, B.P. Gressler, D.J. Wieferich, and J. 

A. Young. 2022a Using fish community and population indicators to assess the biological 

condition of streams and rivers of the Chesapeake Bay watershed, USA. Ecological Indicators 

134:108488. DOI: 10.1016/j.ecolind.2021.108488 

Maloney, K. O., C. Buchanan, R.D. Jepsen, K.P. Krause, M.J. Cashman, B.P. Gressler, J.A. 

Young, and M. Schmid. 2022b. Explainable machine-learning improves interpretability in the 

predictive modeling of biological stream conditions in the Chesapeake Bay Watershed, USA. J. 

Environ. Manage 322:116068. DOI: 10.1016/j.jenvman.2022.116068 



 27 

McCabe, P. 2019. Habitat modeling of invasive blue catfish in the Patuxent River, Chesapeake 

Bay. Master’s project, Duke University. https://hdl.handle.net/10161/18416 

Merriam, E. R., J.T. Petty, and J. Clingerman. 2019. Conservation planning at the intersection of 

landscape and climate change: Brook trout in the Chesapeake Bay watershed. Ecosphere 

10:2:e.02585. DOI: 10.1002/ecs2.2585 

McNeil, D. J., S.C. Goslee, M. Kammerer, S.E. Lower, J.F. Tooker, and C.M. Grozinger. 2024. 

Illuminating patterns of firefly abundance using citizen science data and machine-learning 

models. Science of the Total Environment 929:172329. DOI: 10.1016/j.scitotenv.2024.172329 

Pahlevan, N., B. Smith, K. Alikas, J. Anstee, C. Barbosa, C. Binding, M. Bresciani, B. Cremella, 

C. Giardino, D. Gurlin, V. Fernandez, C. Jamet, K. Kangro, M.K. Lehmann, H. Loisel, B. 
Matsushita, H. Nguyên, L. Olmanson, G. Potvin, S.G.H. Simis, A. VanderWoude, V. 
Vantrepotte, and A. Ruiz-Verdù. 2022. Simultaneous retrieval of selected optical water-quality 
indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote-sensing of Environment 270: 
112860. DOI: 10.1016/j.rse.2021.112860

Parrish, D., C. Pianca, C. Friedrichs, and W. Reay. 2025, Integrating in situ and remote sensing 

techniques for enhanced turbidity monitoring in Chesapeake Bay, Virginia: Paper presented at 

the 2025 National Water Quality Monitoring Conference, Green Bay, Wisconsin, March 10–14, 

2025. 

Pearl J. 2009. Causality: models, reasoning, and inference. 2nd ed. New York (NY): Cambridge 

University Press. 

Phillips, S. J., R.P. Anderson, and R.E. Schapire. 2006. Maximum entropy modeling of species 

geographic distribution. Ecological modeling 190:3-4, 231-259. DOI: 

10.1016/j.ecolmodel.2005.03.026 

Shen, C. 2018. A transdisciplinary review of deep learning research and its relevance for 

water resources scientists. Water Resour. Res. 54, 8558-8593. DOI: 10.1029/2018wr022643 

Schmid, M., T. Hothorn, K.O. Maloney, and D.E. Weller. 2011. Geoadditive regression 

modeling of stream biological condition. Environmental and Ecological Statistics 18, 709-733. 

DOI: 10.1007/s10651-010-0158-4 

Schollaert Uz, S., T J. Ames, J.B. Clark, and S.L. Smith. 2024. DEEP-VIEW integration of 

coastal observations and models to inform water-quality resource managers and decisions, 

Conference: IGARSS 2024 - 2024 IEEE International Geoscience and Remote-sensing 

Symposium. DOI: 10.1109/IGARSS53475.2024.10642274  

Sterle, G., A.A. Harpold, I.U. Haq, J. Perdrial D. Kincaid, and B.S. Lee. 2025. CAMELS-Chem: 

collection of stream-water chemistry data, 1980–2018. HydroShare. DOI: 

10.4211/hs.841f5e85085c423f889ac809c1bed4ac  

https://hdl.handle.net/10161/18416


 

 28 

University of Maryland Center for Environmental Science (UMCES). 2024. Chesapeake Global 

Collaboratory. Cambridge (MD): UMCES, accessed October 21, 2025, at 

https://www.umces.edu/ 

 

Vanhellemont, Q., and K. Ruddick. 2016. ACOLITE for Sentinel-2: Aquatic applications of MSI 

imagery. In: Proceedings of the 2016 ESA Living Planet Symposium. ESA Special Publication, 

SP, pp. 740. 

 

Virginia Estuarine & Coastal Observing System, 2025, VECOS (Virginia Estuarine & Coastal 

Observing System) home page: Virginia Institute of Marine Science, accessed October 21, 2025, 

at https://vecos.vims.edu/home  

Woods, T., M.C. Freeman, K.P. Krause, and K.O. Maloney. 2023. Observed and projected 

functional reorganization of riverine fish assemblages from global change. Global Change 

Biology 29:13, 3759-3780. DOI: 10.1111/gcb.16707 

Weinhold, L., M. Schmid, R. Mitchell, K.O. Maloney, M.N. Wright, and M.Berger. 2020. A 

random forest approach for bounded outcome variables. J. Computational and Graphical 

Statistics. DOI: 10.1080/1061800.2019.1705310 

Xu, T. and F. Liang. 2021. Machine-learning for hydrologic sciences: An introductory 

overview. WIREs Water 8:e1533. DOI: 10.1002/wat2.1533 

Yu, X. and J. Shen. 2021. A data-driven approach to simulate the spatiotemporal variations 

of chlorophyll-a in Chesapeake Bay. Ocean Model. Online 159:101748. DOI: 

10.1016/j.ocemod.2020.101748 

Yu, X., J. Shen, G. Zheng, and J. Du. 2022. Chlorophyll-a in Chesapeake Bay based on 

VIIRS satellite data: Spatiotemporal variability and prediction with machine-learning. 

Journal of Ocean Modeling 180: 102119. DOI: 10.1016/j.ocemod.2022.102119 

Yu, X., J. Shen, and J. Du. 2020. A machine‐learning‐based model for water-quality in 

coastal waters, taking dissolved oxygen and hypoxia in Chesapeake Bay as an example. 

Water Resour. Res. 56:e2020WR027227. DOI: 10.1029/2020wr027227 

Zhang, Q., T.R. Fisher, C. Buchanan, A.B. Gustafson, R.R. Karrh, R.R. Murphy, J.M. 

Testa, R. Tian, and P.J. Tango. 2022. Nutrient limitation of phytoplankton in three 

tributaries of Chesapeake Bay: Detecting responses following nutrient reductions. Water 

Res. 226:119099. DOI: 10.1016/j.watres.2022.119099 

Zhang, Q., R. R. Murphy, R. Tian, and P. J. Tango. 2025. Geography, trajectories, and 

controls of coastal water-quality: More rapid improvement in the shallow zone of the 

Chesapeake Bay. Environ. Sci. Technol. 59, 553-564. DOI: 10.1021/acs.est.4c07368 

Zheng, G., S. Schollaert Uz, P. St-Laurent, M.A.M. Friedrichs, A. Mehta, and P.M. 

DiGiacomo. 2024. Hypoxia Forecasting for Chesapeake Bay Using Artificial Intelligence. 

Artificial Intelligence for the Earth Systems 3(3). DOI: 10.1175/AIES-D-23-0054.1   

https://www.umces.edu/
https://vecos.vims.edu/home


 

 29 

APPENDIX A: Workshop Agenda 

 



 

 30 

 



 

 31 

 



 

 32 
 



 

 33 

APPENDIX B: Workshop Participants 

 

Name Affiliation  Name Affiliation 

Alison Appling USGS Kelly Maloney USGS 

Matt Baker UMBC, STAC Sarah McDonald USGS 

Isabella Bertani UMCES Bob Murphy Tetra Tech 

Gopal Bhatt PSU Rebecca Murphy UMCES 

Patrick Bitterman Kent State Uni George Onyullo DC DOEE 

Jun Suk Byun UMCES  David Parrish VIMS 

Matthew Cashman USGS  Xueting Pu PSU 

Shuyu Chang PSU  Julie Reichert-Nguyen NOAA 

Peter Claggett USGS  Robert Sabo EPA 

Joseph Delesantro EPA CBPO  Sheila Saia Tetra Tech 

Bill Dennison UMCES, STAC  Stephanie Schollaert Uz NASA Goddard 

Gabriel Duran  CRC  Chaopeng Shen PSU 

Andrew Elmore UMCES  Jian Shen VIMS 

Sean Emmons USGS  Gary Shenk  USGS 

Michael Evans Chesapeake 

Conservancy 

 Yalan Song PSU 

Jenn Fair USGS  Melissa Stefun MDE 

KC Filippino HRPDC, STAC  Breck Sullivan USGS 

Burch Fisher UMCES  Peter Tango USGS 

Sophia Grossweiler MDE  Richard Tian UMCES 

Xiaoxu Guo UMCES  Kim Van Meter PSU 

Scott Heidel PA DEP  Denice Wardrop CRC, STAC 

Admin Husic VT  Jimmy Webber USGS 

Vandana Janeja UMBC  Allison Welch CRC 

Jared Kroh HRG, Inc.  Joe Wood CBF, STAC 

Brooke Landry MD DNR  Ryan Woodland UMCES 

Erin Letavic HRG, Inc., STAC  Taylor Woods USGS 

Dong Liang UMCES  Qian Zhang UMCES 

Lew Linker EPA CBPO  Jian Zhao UMCES 

Vyacheslav Lyubchich UMCES    

 

  



 

 34 

APPENDIX C: List of Figures and Tables 

Figure 1. Conceptual Venn diagram illustrating the relationship among artificial intelligence 

(AI), machine-learning, neural networks, deep learning, and generative AI. ................................. 7 

 
Figure 2. (a) Submerged aquatic vegetation (SAV) classification and extent using WorldView-2 

imagery (1.84-m resolution, six visible bands) for Mobjack Bay, VA, on May 4, 2015, overlaid 

with reference data delineating seagrass percent cover obtained from Virginia Institute of Marine 

Science (VIMS) in May through November 2025. (b) Results of an image classification with 

classes for land, no data, SAV, and no SAV. Source: Coffer et al. 9(2023). ............................... 10 

 
Figure 3. Predicted 2020 commercial development probabilities produced by the Chesapeake 

Bay Land Change Model (CBLCM), shown alongside observed 2020 development for 

comparison. The results illustrate the model’s application of deep learning to spatially allocate 

growth across census blocks (Claggett et al. 2023). ..................................................................... 12 

 
Figure 4. Predicted 2020 commercial development probabilities produced by the Chesapeake 

Bay Land Change Model, illustrating application of deep learning to allocate growth across 

census blocks (Claggett et al. 2023). ............................................................................................ 13 

 
Figure 5. Random forest regression with block cross-validation applied to estimate turbidity in 

the York River estuary from PlanetScope surface reflectance anchored with Chesapeake Bay 

National Estuarine Research Reserve (CBNERR)–VA/VIMS Dataflow measurements; Dataflow: 

03/29/2023, 05/21/2024, 05/22/2024, 06/20/2024, 06/21/2024 (model results from Parrish, 2025, 

unpub. data)................................................................................................................................... 14 

 
Figure 6. Ecology model results showing projected “winner” and “loser” traits of fish 

communities under climate and land-use change scenarios. ........................................................ 16 

 
Figure 7. Conceptual hierarchy of stressors and biological responses in stream ecosystems, 

showing how temporal, spatial, climatic, land-use, and hydromorphic drivers influence instream 

habitat, water-quality stressors, and ultimately benthic macroinvertebrate responses. ................ 17 

 
Figure 8. (a) A deep learning model is trained to mimic the outputs of a process-based model 

(PBM). This step is optional because one may also directly implement the model in a DL 

platform. (b) Workflow of the first differentiable parameter learning (dPL) option for deep neural 

network gA: parameters are inferred by a network (in our case, a separate LSTM network) based 
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APPENDIX D: Breakout Group Responses by Group 

During the workshop, breakout groups addressed two key questions under each of the three 

objectives below. These discussions helped identify opportunities, challenges, and actionable 

steps for leveraging AI/ML in Chesapeake Bay restoration efforts. The responses informed the 

workshop's summary of recommendations for advancing AI/ML integration in Chesapeake Bay 

initiatives. Participants were split into in-person breakout groups and one virtual breakout group. 

 

Below are all responses under each breakout question, across all breakout groups.  

 

1. Objective 1: AI/ML Applications and Lessons Learned 

a. How can AI/ML approaches be leveraged (or have been used) to address issues in the 

context of the Chesapeake Bay restoration?  

• Track BMPs on croplands in PA, ID area to recalibrate LU layer (PA); evaluate 

performance of BMPs, inform swimming advisories, USGS Flow Photo Explorer 

Tool for monitoring streamflow dynamics in small systems + stormwater BMPs, 

predictive modeling for habitat condition 

• AI/ML has already been applied across various domains relevant to the Bay 

Agreement 

• AI/ML is highly effective in leveraging multi-scale data sources, including satellite 

imagery, in-situ monitoring, and high-frequency measurements 

• AI/ML can be used to bring in non-Chesapeake Bay data 

• AI/ML can be used to prepare data for intermediate steps (rather than final step) 

• AI/ML can be used to develop large, tempo-spatial models for water-quality (N, P, S)  

• AI/ML can be used to incorporate satellite remote-sensing data for bridging 

monitoring gaps, particularly those related to WQS indicators 

• Multi-scale  

• As data preparation, to better synthesize and represent data - step in the process rather 

than final result  

• Create synergy between two or more different types of data  

• Better capture/quantify processes  

• Developing water-quality spatial-temporal model  

• Understanding best model to use 

• Broad, national-scale models can be refined for Chesapeake Bay, which helps avoid 

overfitting and improves learning beyond the watershed boundary  

• AI/ML benefits from exposure to diverse datasets, with base dynamics carrying over 

across systems. Data from outside the Bay can reinforce and refine models developed 

for local use  

• Smaller-scale modeling is still valuable to capture variability that gets averaged out in 

broader datasets  

• AI/ML can be designed to act as a user-facing tool (similar to a “front desk” or 

https://www.usgs.gov/apps/ecosheds/fpe/#/explorer/119
https://www.usgs.gov/apps/ecosheds/fpe/#/explorer/119
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chatbot) that retrieves answers, connects users to the best model, and synthesizes 

complex information into simple responses 

• Lots of current and potential examples  

• Effect of management practices  

• Find AI fixes for some of the problems identified 

b. What are some of the advantages and disadvantages of AI/ML compared to other 

established approaches? 

• Compared to process-based approaches, AI/ML algorithms are generally easier 

to learn, adopt, and implement. However, it is not to replace traditional 

approaches 

• AI/ML models are flexible, data-driven, and do not require much domain 

knowledge, and are gaining momentum and public perception/awareness 

• Explainability of AI/ML results to management/stakeholders is a major issue 

• Uncertainty quantification of AI/ML is lagging traditional statistical approaches 

• Advantages: flexible at learning, high performance and predictability public 

popularity, communication tool, better able to handle multiple variables, 

unconventional uses, identifying oddballs, point sources 

• Disadvantages: uncertainty quantification, model hallucinations, being able to 

justify, address management/stakeholder concerns 

• AI/ML can handle large, diverse datasets and create connections across different 

domains, offering flexibility and predictive power 

• Too much diversity in training data can dilute outputs; moderate diversity is 

often more effective 

• Small-scale heterogeneity may be lost in broader datasets, raising questions 

about when uniformity is important versus when finer detail adds value 

• AI/ML outputs may be shallow compared to domain expertise, with limited 

depth in specialized questions 

• Advantage - take large data and boil down to make conclusion, scalable, 

portable (robust), ability to capture dynamics (pattern/trend detection), and non-

linear complicated interactions 

• Disadvantage - demand can be high in set-up, at the local-level need more 

improved data sets; black box; can infer information about variables that isn’t 

there; may behave in ways that make it difficult to evaluate; high concept but 

may not be understandable at local levels 

 

2. Objective 2: Challenges and Gaps in AI/ML Implementation 

a. What challenges or gaps have you encountered when applying AI/ML in the context of 

Chesapeake Bay (or elsewhere)?  

• Data cleanliness; model inception - incorporate models into models, can create 

compounded errors (not unique to AI); calculating and articulating uncertainty - not 
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sure how to *show uncertainty; estimation under different scenarios - will be 

dependent on variables used in model training and can be unstable. Learn right 

thing for wrong reason, teasing out ‘why’ 

• Availability of data, even for the Chesapeake which is considered a data-rich 

system 

• Availability of features data matched to response data at consistent spatial and 

temporal scales 

• Lack of standardization in selecting AI/ML methods, requiring a balance between 

model accuracy and interpretability 

• Response variables are not matched on a regular basis  

• Need more monitoring/data collection to run models 

• Outside datasets are not always “AI-ready,” requiring additional preparation and 

alignment 

• Hydrologic data can vary by scale; small-system heterogeneity may not be captured 

in regional datasets 

• Watershed divides and boundaries shift in newer datasets, creating mismatches with 

existing models 

• Missing predictor and response variables limit model performance, while 

inconsistencies in coding and uniformity remain an issue 

• Social systems behave unpredictably compared to physical processes, making it 

harder to define predictors and responses 

b. What have you done (or may be done) to address the challenges and gaps? 

• Allocate resources for data harmonization of input data (e.g., the USGS NTN 

concentration data) and make those data available with data releases (including 

metadata) 

• Advance the Data Hub for Chesapeake Bay researchers and managers by including 

both monitoring data and modeling data (e.g., CAST, temperature, point source), 

and making those data available to users 

• Promote/allocate resources to data harmonization 

• Curating and unifying datasets can improve both predictor and response variables, 

with potential for additional requirements to standardize inputs 

• Tools can be designed to generate watershed boundaries directly from maps, 

simplifying data extraction for users 

• Customized AI systems curated to Chesapeake Bay assets could summarize existing 

information and guide users to the right datasets or models 

• Dialogue between data scientists and domain experts is essential for defining 

necessary predictor variables and ensuring models have depth 

• Gaps in predictors: can drop the sites, enable users to flag data  

• Use off-the-shelf pre-built image screening models  
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• Effective ways to use meta-data (potentially through generative AI)  

• (maybe) Causal deep learning techniques 

 

3. Objective 3: Recommendations and Future Opportunities 

a. What are the biggest barriers preventing broader AI/ML adoption in Chesapeake research 

and management?  

• ML should be paired with data visualization 

• Takes time and expertise to effectively communicate across groups; silos across 

fields (i.e., medical models)  

• What is meant by AI can be unclear and scary! Need to define what AI is and how 

it is being used in the context; should popularize its use (i.e., educate students, 

vocational training programs); social/human side to implementation 

• Data availability for AI/ML 

• Disciplinary barriers between AI/ML researchers and process-based model 

developers hinder integration and collaboration 

• Engage with CBP workgroups and the Water Quality GIT early and consistently to 

align AI/ML applications with their priorities and goals, and keep the decision 

makers in mind 

• Enhance communication of AI/ML findings to managers and decision makers to 

support informed policy and management actions (e.g., xAI approaches) 

• Data availability and utility  

• Communication between people (modelers, statisticians, decision makers, etc.)  

• Expertise  

• Engagement strategies  

• High ambitions for the models 

• Lack of alignment between available data and model needs (predictors vs. 

responses, spatial vs. temporal scales) 

• Limited ability of generalized AI tools to provide deep, domain-specific insights 

• Social science variables are harder to model because of unpredictable human 

behavior and rapid changes in system representation 

• Data preparation and labeling need to improve for AI to be fully effective 

• Acceptability to stakeholders  

o Interpretability => use interpretable methods  

o Newness => speed of development facilities stakeholder interaction 

• Data  

o Uneven temporal and spatial distribution  

o Lack of problem-relevant data  

o Unclear ontology and varying quality  

o May be an AI solution to these problems  
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o Human language queries  

o Database standardization monitoring design 

b. What forums, workshops, or working groups may be established to foster collaborations 

and discussions among different groups of AI/ML researchers as well as between them 

and Bay scientists and managers? 

• Establish an informal workgroup (perhaps similar to the Integrated Trends Analysis 

Team (ITAT) and Factors Team) to continue the conversation (e.g., Ches-BRAIN: 

Chesapeake Bay Research with Artificial Intelligence and Networking), which may 

be led by CBP or USGS 

• Strengthen collaborations across AI/ML research groups and resource managers 

(including HydroML, CGC, USGS, etc), to drive interdisciplinary advancements 

• Promote community engagement of AI/ML (e.g., community challenge on 

identifying response variables, etc) 

• Collaborate with Factors Team (USGS)  

• Create Bay Program Machine-learning working group (Ches-BRAIN)  

• Advertise in journals  

• Create forum for community engagement (e.g., suggest response variable) 

• A Chesapeake-focused catalogue or “librarian” system could help managers and 

researchers quickly identify relevant datasets and models 

• Curated AI/ML interfaces could provide both simple answers for managers and 

technical detail for researchers, serving as a shared resource 

• Expanding data cataloguing efforts to include metadata, attribution, and raw data 

would improve usability for AI/ML applications 

• Community engagement efforts could help prioritize response variables and 

strengthen collaboration between model developers and CBP stakeholders 

• Look for scientific discussion opportunities: CCRS, HydroML, Ches-BRAIN, 

STAC workshops 

• CBP GITs/WGs - e.g., introduce USGS Flow Photo Explorer to relevant groups 

• Conferences: CCMP (Chesapeake Community Research Symposium), Association 

of Mid-Atlantic Aquatic Biologists, HydroML 
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APPENDIX E: Literature Review Annotated Bibliography  

The literature review compiled by the steering committee, consisting of 74 entries, focuses on the 

application of artificial intelligence (AI) and machine-learning (ML) techniques to study and 

manage environmental and ecological aspects of the Chesapeake Bay and its surrounding 

watershed. The studies span a range of topics, including water-quality, coastal ecosystems, 

microbial communities, and species populations, with a strong emphasis on leveraging remote-

sensing, satellite data, and in-situ measurements. Techniques such as neural networks, random 

forests, clustering, and regression models are commonly employed to predict variables like DO, 

nutrient concentrations, chlorophyll a levels, salinity, and total suspended solids. Many of these 

works aim to enhance monitoring and forecasting capabilities, offering insights into how 

environmental factors (i.e., land-use, climate, and hydrology) interact with biological and 

physical processes in the Bay. 

 

A significant portion of the review highlights efforts to address practical challenges in the 

Chesapeake Bay region, such as hypoxia, coastal flooding, and habitat conservation. For 

instance, studies explore the use of deep learning to model wave spectra, predict storm surges, 

and map wetlands or seagrass density, often integrating diverse data sources like Sentinel-2 

imagery, MODIS satellite data, and lidar surveys. Other research focuses on biological 

conditions, using AI to assess fish assemblages, microbial populations, and phytoplankton 

production, or to identify drivers of species abundance and biodiversity. Collectively, the 

literature review demonstrates a growing reliance on data-driven approaches to inform resource 

management, conservation planning, and policy decisions, reflecting the interdisciplinary nature 

of tackling environmental issues in this critical estuarine system.  

 

A screenshot of the Literature Review Sheet is on the following page, and can be downloaded 

here. Each article was cataloged by reference information, author affiliations, year of publication, 

journal, study focus, AI/ML methods used, and a short description drawn from the abstract. The 

compiled dataset provides a baseline resource for understanding the scope of AI/ML applications 

to water-quality, ecology, and related environmental challenges in the Chesapeake Bay 

watershed. 

 

https://www.chesapeake.org/stac/cb-and-ml-literature-review-spreadsheet/


 

 41 


	Executive Summary
	Introduction
	Presentation Summaries
	Session I: Lessons Learned from AI/ML Applications in the Chesapeake Bay Watershed
	Overview of Chesapeake Bay Restoration: CBP Goals & Outcomes – Gary Shenk (USGS)
	Introductory Overview of AI and ML – Alison Appling (USGS)
	Literature Summary of Watershed and Living Resources Studies Involving AI/ML – Kelly Maloney (USGS)
	Literature Summary of Estuarine and Living Resources Studies Involving AI/ML – Jian Shen (VIMS)
	AI/ML Integration of Satellite Remote-sensing: Data Harmonization Challenges and Gaps – Stephanie Schollaert Uz (NASA)

	Session II: Identify the Challenges and Gaps in Applying AI/ML Approaches to Chesapeake Bay Data
	GeoAI and Social Systems Modeling – Patrick Bitterman (Kent State University)
	Integrated Deep-Learning Models to Forecast Land-use Change – Mike Evans (Chesapeake Conservancy)
	Advances in Water-quality Predictions: Datasets and Learning Frameworks – Shuyu Chang (PSU)
	Modeling Light Conditions in the York River Estuary by Anchoring Satellite Imagery with High-Frequency In-Situ Observations – David Parrish (VIMS)
	Physical Habitat is More Than a Sediment Issue: A Multi-dimensional Habitat Assessment Indicates New Approaches for River Management – Matthew Cashman (USGS)
	Observed and Projected Functional Reorganization of Riverine Fish Assemblages from Global Change – Taylor Woods (USGS)
	Images to Info: the USGS Flow Photo Explorer – Jenn Fair (USGS)
	Leveraging Machine-learning and Expert Knowledge to Unravel the Complexities of Multiple Freshwater Ecosystem Stressors – Sean Emmons (USGS)

	Session III: Develop recommendations and identify opportunities for harnessing the power of AI/ML approaches to address Chesapeake Bay issues
	State-of-the-Art AI & Physics-Informed ML in Hydrology and Water-quality: Insights and Synergies – Chaopeng Shen (PSU)
	Panel: AI/ML Community Development – Dong Liang (UMCES), Chaopeng Shen (PSU), Vandana Janeja (UMBC), Kelly Maloney (USGS), Robert Sabo (EPA), Alison Appling (USGS)


	Breakout Group Discussions
	Objective 1
	Objective 2
	Objective 3

	Recommendations
	References
	Appendix A: Workshop Agenda
	Appendix B: Workshop Participants
	Appendix C: List of Figures and Tables
	Appendix D: Breakout Group Responses by Group
	Appendix E: Literature Review Annotated Bibliography



