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Executive Summary

The Chesapeake Bay and its watershed (hereafter “Chesapeake Bay region”) have been the
focus of extensive restoration efforts for several decades. These restoration efforts are
guided by the Chesapeake Bay Watershed Agreement (Chesapeake Executive Council
2014) which outlines 10 goals and 31 measurable outcomes. The Chesapeake Bay is
globally recognized as a model for coastal restoration due to long-term investments in
monitoring, modeling, implementation and research by the Chesapeake Bay Program (CBP)
partnership. These monitoring network spans tidal and non-tidal regions and provides data
across multiple scales. Artificial intelligence (Al), particularly machine-learning (ML) and
deep learning (DL), has emerged as a powerful tool for analyzing large, complex datasets.
These techniques have gained widespread adoption across various disciplines, including
ecology, hydrology, and environmental science. In the Bay context, AI/ML is increasingly
being used to explore drivers of environmental change, analyze system dynamics, and
predict conditions in areas with limited monitoring.

The CBP partnership, particularly its Scientific and Technical Advisory Committee
(STAC), has increasingly recognized the growing role of AI/ML in watershed and estuarine
management. Recent Chesapeake Community Research Symposium sessions and initiatives
such as the Chesapeake Global Collaboratory highlight increasing regional momentum to
apply big data and AI/ML for environmental solutions. Together, these developments
underscore the timely need to explore how AI/ML can help advance Chesapeake Bay
restoration and management.

This STAC workshop, titled “Leveraging Artificial Intelligence and Machine learning to
Advance Chesapeake Bay Research and Management: A review of status, challenges, and
opportunities,” was held from February 24-25, 2025, in Edgewater, Maryland to bring
together over 50 federal, state, and academic scientists and partners to synthesize the
current state of AI/ML applications and identify research gaps in Chesapeake Bay research
and management. The workshop focused on three main objectives:

1. Summarize recent AI/ML applications and lessons learned in both tidal and non-
tidal areas of the Chesapeake Bay region.

2. Identify challenges and gaps in applying AI/ML approaches to Chesapeake Bay
data. Such challenges and gaps may include data limitations, harmonization issues,
ineffective communication of AI/ML insights, and a lack of coordination among
research and management institutions.

3. Develop recommendations and identify opportunities for leveraging AI/ML to
address issues across the Chesapeake Bay region. Key areas of focus may include
generating new information to support watershed management, delivering AI/ML-
generated insights to managers in a clear and actionable way, and fostering greater
collaboration among stakeholders within the CBP Partnership.

Workshop participants engaged in science presentations and breakout sessions to develop
recommendations for advancing the integration of AI/ML techniques into research and



management across the Chesapeake Bay region. By synthesizing current applications,
identifying challenges, and exploring new opportunities, the workshop has provided
valuable insights and recommendations for better leveraging AI/ML approaches to support
the success of Bay restoration efforts. Together, these recommendations provide a roadmap
for enhancing data-driven, science-based decision making aligned with the goals and
outcomes of the Chesapeake Bay Watershed Agreement.

Recommendations

1. Strengthen data infrastructure and integration for AI/ML applications

e Harmonize spatial and temporal datasets across programs and ensure consistent metadata.

e Leverage diverse datasets, including satellite, in-situ, and high-frequency data, for use in
modeling and monitoring applications and filling data gaps.

e Design monitoring and data processing efforts so that resulting products are problem-
relevant and can be readily incorporated into AI/ML workflows.

e Build harmonized response and predictor datasets and develop example use cases to
guide widespread AI/ML applications.

2. Leverage AI/ML for restoration of Chesapeake Bay tidal and non-tidal regions and
decision support
e Use AI/ML to assess effectiveness and efficiency of restoration practices, evaluate
progress, and identify drivers of environmental change.
¢ Enhance watershed and estuarine models by integrating AI/ML outputs and insights.
e Promote integration between AI/ML and traditional monitoring, analysis, and modeling
approaches to enhance scientific credibility and transparency.
e Develop accessible Al-driven tools (e.g., Chesapeake-specific large language models) for
scenario planning to help identify management priorities.

3. Promote transparency and engage managers and stakeholders

e Advance explainable AI/ML and uncertainty protocols so that results are interpretable,
credible, and trusted.

e Couple AI/ML with tailored data visualizations to improve interpretability and use at
broader scales.

e Foster engagement of managers and decision makers at all stages of AI/ML projects to
ensure products align with management priorities and can be effectively applied.

e Use tailored communication strategies to translate AI/ML insights into actionable
guidance for restoration planning.

4. Build collaboration and capacity

e Establish an AI/ML network (e.g., Chesapeake Bay Research with Artificial Intelligence
and Networking or “Ches-BRAIN™) to foster collaboration and to provide a clear place
where managers and others can easily find and connect with AI/ML experts.

e Encourage participatory events such as hackathons to spark innovation and strengthen
cross-sector collaboration.

e Invest in training and literacy programs so that scientists, managers, and decision makers
can effectively use and interpret AI/ML tools and outputs.



Introduction

The Chesapeake Bay and its watershed (hereafter “Chesapeake Bay region”) have been the
focus of extensive restoration efforts for several decades. These restoration efforts are
guided by the Chesapeake Bay Watershed Agreement (Chesapeake Executive Council
2014), which outlines 10 goals and 31 measurable outcomes. The Chesapeake Bay is
globally recognized as a model for coastal restoration due to long-term investments in
monitoring, modeling, and research by the Chesapeake Bay Program (CBP) partnership.
These extensive monitoring data span both tidal and non-tidal regions of the Chesapeake
Bay and cover various temporal and spatial scales. Such data provide valuable insights into
ecosystem changes and help generate hypotheses about environmental drivers. However,
such data are often complex and difficult to interpret. As a result, new approaches to extract
and communicate meaningful patterns could advance scientific understanding and support
ongoing restoration efforts.

Artificial intelligence (Al), particularly machine-learning (ML), has become a
transformative tool in environmental research, especially for extracting elusive patterns
from large, complex datasets that traditional analysis methods can fail to detect. These Al
techniques have gained widespread adoption across various disciplines, including ecology,
hydrology, and environmental science (Shen, 2018; Xu and Liang, 2021). In the context of
the Chesapeake Bay region, AI/ML techniques have been increasingly applied to analyze
complex dynamics, identify environmental drivers, and predict conditions in unmonitored
areas. For example, recent research has used AI/ML to study chlorophyll a (Yu and Shen,
2021), dissolved oxygen (DO) (Yu et al. 2020), nutrient limitation (Zhang et al. 2022),
water-quality standards (Zhang et al. 2025), and biological stream health (Maloney et al.
2022b).

The CBP partnership, particularly its Scientific and Technical Advisory Committee
(STAC), has increasingly recognized the potential of using AI/ML for improving decision
support towards better Bay watershed management. Researchers from institutions in the
Bay watershed, such as the University of Maryland Center for Environmental Science
(UMCES), Virginia Institute of Marine Science (VIMS), Pennsylvania State University
(PSU), and Johns Hopkins University (JHU), have proposed AI/ML-focused sessions at the
2024 Chesapeake Community Research Symposium (Chesapeake Community Research
Symposium 2024), signaling growing interest in these approaches. Furthermore, UMCES
has recently launched the Chesapeake Global Collaboratory (UMCES 2023), a new
initiative that aims to harness big data and AI/ML tools to accelerate the process of
identifying cost effective, time efficient, and robust solutions for addressing complex
environmental challenges. These developments underscore how the exploration of AI/ML
capabilities can support ongoing restoration and management of the Bay and its watershed.

This STAC workshop brought together federal, state, and academic partners to synthesize
the current state of AI/ML applications and identify gaps in Chesapeake Bay research and
management. The workshop focused on three main objectives:
1. Synthesize recent AI/ML applications and lessons learned in both tidal and non-tidal
areas of the Chesapeake Bay region.
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2. Identify challenges and gaps in applying AI/ML approaches to Chesapeake Bay
data. Such challenges and gaps may include data limitations, harmonization issues,
ineffective communication of AI/ML insights, and a lack of coordination among
research and management institutions.

3. Develop recommendations and identify opportunities for leveraging AI/ML
approaches to address critical management issues and foster successful restoration
across the Chesapeake Bay region. Key areas of focus may include generating new
information to support watershed management, delivering AI/ML-generated insights
to managers in a clear and actionable way, and fostering greater collaboration
among stakeholders within the CBP partnership.

This STAC workshop serves as a critical step in advancing the integration of AI/ML
techniques into research and management across the Chesapeake Bay region. By
synthesizing current applications, identifying challenges, and exploring new opportunities,
the workshop provided valuable insights and recommendations for better leveraging AI/ML
to support restoration efforts in the Bay. These insights will help inform data-driven,
science-based decision making aligned with the goals and outcomes of the Chesapeake Bay
Watershed Agreement (Chesapeake Executive Council 2014).



Presentation Summaries

This section summarizes presentations at the workshop. Slides for the presentations are available
on the STAC Leveraging Artificial Intelligence and Machine-learning to Advance Chesapeake
Bay Research and Management: A review of status, challenges, and opportunities workshop
webpage, accessible using the following link.

The workshop was organized into three main sessions: (1) recent AI/ML applications and lessons
learned, (2) challenges and gaps in applying these approaches to Chesapeake Bay data, and (3)
opportunities and recommendations for advancing the use of these approaches. Descriptions of
each session, including presentation topics and speakers, are provided below.

Session I: Lessons Learned from AI/ML Applications in the Chesapeake Bay Watershed

This session synthesized recent applications of AI/ML to Chesapeake Bay research, spanning
both tidal and non-tidal systems. Presenters described the objectives of their studies, the
reasoning behind the choice of AI/ML methods, and the novel insights these approaches
provided. Discussion also emphasized how these findings have already contributed (or could
contribute) to advancing restoration of Chesapeake Bay tidal and non-tidal regions in support of
the Watershed Agreement’s goals and outcomes.
Invited presentations in this session included:

e Gary Shenk (USGS) — Overview of Chesapeake Bay Restoration: CBP Goals &

Outcomes
e Alison Appling (USGS) — Introductory Overview of Al and ML
e Kelly Maloney (USGS) — Literature Summary of Watershed and Living Resources

Studies Involving AI/ML
e Jian Shen (VIMS) — Literature Summary of Estuarine and Living Resources Studies
Involving AI/ML

e Stephanie Schollaert Uz (NASA) — AI/ML Integration of Satellite Remote-sensing: Data
Harmonization Challenges and Gaps

Overview of Chesapeake Bay Restoration: CBP Goals & Outcomes — Gary Shenk (USGS)

The CBP is a collaborative partnership among various stakeholders — including government
agencies, environmental professionals, and scientists — aimed at restoring and maintaining the
health of the Chesapeake Bay. It is guided by agreements between state and federal partners,
including the most recent 2014 Chesapeake Bay Watershed Agreement (Chesapeake Executive
Council 2014) which established five major themes: Abundant Life, Clean Water, Conserved
Lands, Engaged Communities and Climate Change. Ten total goals were established under the
themes, each with specific outcomes and totaling 31 separate outcomes to be used to determine
progress. Presently, the CBP has identified 230 science needs that aim toward developing
necessary support to underpin successful management achievement of the themes, goals and
outcomes.

Although AI and ML technologies are being explored to support the CBP’s restoration efforts,
particularly in areas like land-use mapping, habitat mapping, nutrient transport analysis, and
submerged aquatic vegetation detection from satellite imagery, only two of the 230 science needs
explicitly call for AI/ML methods. However, the CBP is still in the early stages of understanding
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how Al can be fully leveraged for improving decision-support on increased effectiveness with
targeting, planning, and implementation towards addressing its restoration priorities. In general,
many of the scientific problems involve understanding relationships between human systems,
environmental resources and external factors, and generating relevant data describing those
systems.

The CBP is focused on determining and implementing appropriate management strategies;
therefore, AI/ML tools that make short-term predictions or are not interpretable may be of
limited use. Management questions require accurate mapping of the past and models that can
confidently predict the effects of different management options. It is expected that the
participants in this workshop would identify areas to successfully apply AI/ML techniques that
could be used as a tool to address management priorities.

Introductory Overview of AI and ML — Alison Appling (USGS)

Alison Appling presented a broad overview of Al and ML as they apply to CBP research needs.
The presentation included definitions and relationships among AI, ML, and major classes of
methods including tree-based machine-learning methods, neural networks, deep learning,
generative Al, automatic ML selection, and eXplainable Al. A taxonomy of ML-suitable tasks
was presented, including but not limited to the four major categories of classification, clustering,
regression, and dimensionality reduction.

A light analysis of the STAC literature compilation of Chesapeake Bay ML applications was
then used to direct a deeper dive into several major ML methods: tree-based ML (decision trees,
random forests, and gradient boosting); neural networks (neurons, backpropagation, gradient
descent, influential neural network architectures); differentiable modeling that hybridizes neural
networks with process-based components; and SHapley Additive exPlanations (SHAP) as a
popular Explainable AI method. An overview of terminology and scope is provided in Figure 1,
which uses a Venn diagram to show how Al artificial intelligence encompasses ML, neural
networks, DL, and generative Al.

The presentation addressed strategies for selecting an ML method, which could include
following published guides, employing automatic ML selection tools, or prioritizing between
accuracy and interpretability to fit the given research need. Lastly, the presentation covered some
opportunities to leverage generative Al — either directly, in environmental modeling, or
indirectly, by applying large language modeling tools to support the processes of developing new
ML applications or exploring the scientific literature.
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Figure 1. Conceptual Venn diagram illustrating the relationship among artificial intelligence (Al), machine-learning, neural
networks, deep learning, and generative Al.

Literature Summary of Watershed and Living Resources Studies Involving AI/ML — Kelly
Maloney (USGS)

Synthesizing AI/ML literature as it pertains to living resources in the watershed is fraught with
many obstacles including different terminology, different ecological disciplines, studies often
being published in non-ecological outlets, differing extent of studies, and a rapidly evolving
field. Given these obstacles, the presentation opened by focusing on three key methodological
papers: the Phillips et al. (2006) paper on maximum entropy, the Cutler et al. (2007) paper on
random forests, and the Elith et al. (2008) paper on boosted regression trees. All three methods
have seen a dramatic increase in application since the date of publication together totaling, as of
February 5, 2025 (Scopus query), over 2,000 citations per year. A word cloud analysis for each
of these papers indicated that “species distribution”, “habitat”, “climate”, “spatial”, and
“prediction” were routinely mentioned in titles of the most recent 2,000 publications citing each

paper.

The presentation then highlighted studies focused on species distribution and habitat assessments
at either a regional/continental or Chesapeake Bay watershed scale. Random forest machine-
learning algorithms were used for predicting firefly presence/absence and relative abundance in
the eastern United States (McNeill et al. 2024), presence/absence of fish species in the
Chesapeake Bay watershed (Maloney et al. 2022b), and stream health as measured by benthic
macroinvertebrates within the contiguous United States (Hill et al. 2017) and Chesapeake Bay
region (Maloney et al. 2022a). This section ended with a case study that used double ML (from
the field of causal inference) to predict bird species abundance and population trends across
North America and how such a method can reduce confounding bias (Fink et al. 2023).

Next, the presentation highlighted a timeline of key AI/ML cases studies implementing AI/ML
techniques within the Chesapeake Bay watershed (Table 1). The presentation ended with
highlighting several studies between ecologists and statisticians (e.g., Weinhold et al. 2020 and



Schmid et al. 2011) emphasizing that building such cross-disciplinary collaborations to leverage
both field’s expert knowledge can strengthen our understanding of the system and with a list of
some key review paper citations.

Reference Target Methods
Goetz et al. 2007 Bird species richness and Regression tree vs traditional
abundance approaches
Maloney et al. 2009 Stream health from benthic Comparison of regression trees,
macroinvertebrates random forest, conditional

regression trees and conditional
random forest

McCabe 2019 Presence/absence of blue catfish Boosted regression tree
Merriam et al. 2019 Brook trout occupancy Boosted regression tree
Woods et al. 2023 Fish community change with Random forest

changing environmental conditions

Table 1. Timeline of Chesapeake Bay watershed studies using AI/ML approaches and involving living resource and habitat
endpoints.

In conclusion the presentation provided numerous examples of how AI/ML has been used to
explore living resources both within and outside the Chesapeake Bay watershed. The majority of
example have used AI/ML in a prediction framework, but recent work is incorporating
interpretable Al and causal inference techniques.

Literature Summary of Estuarine and Living Resources Studies Involving AlI/ML — Jian Shen
(VIMS)

ML has emerged as a valuable modeling tool for time-series forecasting of environmental state
variables. Unlike traditional deterministic modeling approaches, ML offers a cost-effective
alternative that leverages the full potential of observational data. In the Chesapeake Bay region,
ML has been applied across a wide range of studies, encompassing supervised and unsupervised
learning, neural networks, and deep learning (DL) techniques. Applications include forecasting
storm surge, surface waves, and saltwater intrusion, as well as ecosystem-related modeling such
as predicting harmful algal blooms, estimating primary production, forecasting DO levels in the
Bay’s main channel, and estimating hypoxia volume. These efforts have utilized observational
data, model-generated outputs, satellite imagery, and hybrid approaches that integrate numerical
models with empirical observations. These studies have demonstrated and expanded the practical
potential of ML in coastal and estuarine science.



ML models have shown strong performance in forecasting storm surge and surface waves in the
Bay, which are primarily driven by wind and governed by relatively well-understood physical
dynamics. However, ecological applications pose greater challenges. Many ML models rely
heavily on in situ observations, such as salinity, temperature, nutrient concentrations, and
stratification, to predict ecological variables at fixed locations. This limits their utility for
scenario-based analyses that aim to answer "what-if" questions. Applying ML to simulate daily
variations in two or three dimensions remains a significant challenge. Although some models can
reproduce observed state variables with reasonable accuracy, they may fail to capture the
underlying biogeochemical processes. For example, a model might simulate DO levels but fail to
reflect changes resulting from nutrient load reductions. Nonetheless, integrating numerical model
outputs with observational data during training offers a promising path forward. The rapid
advancement of ML technologies is creating new opportunities to simulate the environment and
ecological state variables, such as salinity, temperature, and DO in two and even three
dimensions, improving both spatial coverage and predictive capability.

AI/ML Integration of Satellite Remote-sensing: Data Harmonization Challenges and Gaps —
Stephanie Schollaert Uz (NASA)

This presentation reviewed applications of satellite remote-sensing with AI/ML artificial
intelligence and machine-learning for Chesapeake Bay living resources, highlighting both
opportunities and limitations. The studies referenced demonstrated fused radar-optical
classification of tidal wetlands (Lamb et al. 2021), SAV mapping using WorldView-2 imagery
and deep convolutional neural networks (Coffer et al. 2023), chlorophyll a prediction from
Visible Infrared Imaging Radiometer Suite (VIIRS, Yu et al. 2022), satellite data combined with
machine-learning models (Yu et al. 2022), and simultaneous retrieval of chlorophyll a, turbidity
(Pahlevan et al. 2022), and colored dissolved organic matter (CDOM) from Landsat, Sentinel-2,
and Sentinel-3 using mixture density networks (Pahlevan et al. 2022). For water clarity, the
DEEP-VIEW framework integrates Moderate Resolution Imaging Spectroradiometer (MODIS),
Ocean and Land Color Instrument (OLCI), and VIIRS (Schollaert Uz et al. 2024), and additional
approaches apply non-Euclidean water distance interpolation for mapping diffuse attenuation
(Schollaert Uz et al. 2024 & Clark et al. 2024). Hypoxia forecasting was conducted with
convolutional and long short-term memory (LSTM) networks trained on satellite-derived
reflectance and hydrodynamic model fields (Zheng et al. 2024). An example SAV classification
result is shown in Figure 2.
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Figure 2. (a) Submerged aquatic vegetation (SAV) classification and extent using WorldView-2 imagery (1.84-m resolution, six
visible bands) for Mobjack Bay, VA, on May 4, 2015, overlaid with reference data delineating seagrass percent cover obtained
from Virginia Institute of Marine Science (VIMS) in May through November 2025. (b) Results of an image classification with
classes for land, no data, SAV, and no SAV. Source: Coffer et al. 9(2023).

The presentation identified key satellite remote-sensing opportunities and challenges for the
Chesapeake Bay, including consideration of sun glint, and atmospheric interference; land
adjacency effects from narrow waterways; optically complex waters; and tradeoffs between
spatial resolution and revisit frequency. Although aquatic sensors provide high signal-to-noise
ratios (SNR) and daily coverage at coarse resolution (300 m—1 km), terrestrial sensors offer finer
spatial resolution (10-30 m) at lower SNR and longer revisit intervals. Validation remains
limited by the small number of above-water radiance measurements.

Limitations for submerged aquatic vegetation (SAV) classification include requirements for
image acquisition at consistent tidal stage; frequent missing data due to clouds; signal attenuation
with water depth causing mischaracterization of deep edges; and multispectral imagery being
insufficient for seagrass species identification. Hyperspectral imagery can distinguish plant types
through pigment discrimination but is not yet routinely available at high spatial resolution.

Ongoing interagency work connects satellite providers and users to address runoff, water-quality,
algal blooms, carbon fluxes, and flooding. Recent deployments include AErosol RObotic
NETwork- Ocean Color (AERONET-OC) (2021) and hyperspectral spatial-spectral
understanding network (HyperNet) (2023) for calibration/validation. Priorities include improving
atmospheric correction, spectral libraries, and phytoplankton classification to fill monitoring
gaps. Despite limitations, satellite data fill a critical data gap and provide an important source of
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wide-spatial data coverage. Ground-truth data will always be needed to calibrate satellite data,
the combination of both offers better data coverage for improved monitoring and prediction.

Session II: Identify the Challenges and Gaps in Applying AI/ML Approaches to
Chesapeake Bay Data

This session examined the major challenges and gaps that hinder the application of AI/ML
approaches to Chesapeake Bay tidal and non-tidal data. Presenters highlighted issues such as
limited or inconsistent datasets, barriers to harmonizing information across sources, and the need
for greater expertise in algorithm design and implementation. The discussion also raised
concerns about the lack of accessible software code for replication or adaptation, the difficulty of
communicating and interpreting AI/ML outputs, and the need for stronger coordination among
researchers and managers within the CBP partnership. Invited presentations in this session
included:
e Patrick Bitterman (Kent State University) — GeoAl and Social Systems Modeling
e Mike Evans (Chesapeake Conservancy) — Integrated Al Models to Forecast Land-use
Change
e Shuyu Chang (PSU) — Advances in Water-quality Predictions: Datasets and Learning
e David Parrish (VIMS) — Modeling Light Conditions in the York River Estuary by
Anchoring Satellite Imagery with High-Frequency In-Situ Observations
e Matthew Cashman (USGS) — Physical Habitat is More Than a Sediment Issue: A Multi-
dimensional Habitat Assessment Indicates New Approaches for River Management
e Taylor Woods (USGS) — Observed and Projected Functional Reorganization of Riverine
Fish Assemblages from Global Change
e Jenn Fair (USGS) — Images to Info: the USGS Flow Photo Explorer
e Sean Emmons (USGS) — Leveraging Machine-learning and Expert Knowledge to
Unravel the Complexities of Multiple Freshwater Ecosystem Stressors

GeoAl and Social Systems Modeling — Patrick Bitterman (Kent State University)

This presentation detailed ongoing research that integrates spatially explicit machine-learning
approaches with agent-based models of human decision making to better represent feedbacks in
social-ecological systems. Drawing from ongoing National Science Foundation-funded research
(CNH2-L: #2009248), Bitterman (Kent State University) presented research combining
Geospatial Artificial Intelligence (GeoAl methods) (e.g., random forest, eXtreme Gradient
Boosting or XGBoost) with structured data on land-use planning and best management practice
(BMP) implementation to model scenario-based outcomes under Chesapeake Bay Phase 3
Watershed Implementation Plan inputs. Model outputs suggest strong spatial and scalar path
dependencies in management trajectories, highlighting how past implementation patterns shape
future land-use and conservation outcomes at county and local scales. These model results are
supported by results of qualitative interview results and document analysis.

A key contribution of this work is the development of a hybrid modeling framework that couples
GeoAl methods with more traditional social systems modeling approaches to reflect regulatory
feedbacks and decision making processes. The presentation emphasized the importance of
incorporating fine-scale social data (e.g., planning documents, local physical and social context)
to improve predictive accuracy and system understanding. The results of this work demonstrate
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that management decisions are not only reactive to environmental targets and local conditions,
but are also strongly conditioned by prior choices, institutional arrangements, and socio-political
context — insights that could advance the CBP modeling system’s treatment of human dynamics.

Integrated Deep-Learning Models to Forecast Land-use Change — Mike Evans (Chesapeake
Conservancy)

DL models are being applied to forecast land-use change in the Chesapeake Bay watershed, with
objectives to account for variation in types of places, accommodate dynamic growth trajectories,
and improve the surface of transition probabilities. The aim is to generate spatially and
temporally accurate allocations of projected population and employment. Long Short-Term
Memory (LSTM) networks capture temporal dynamics, and convolutional LSTMs incorporate
spatial information to represent growth processes and refine transition probabilities.

Socio-economic data are ordered through self-organizing and hierarchical self-organizing maps
to classify counties and census blocks as “types of places.” Housing, population, employment,
and migration time-series support these classifications. The Chesapeake Bay Land Change
Model (CBLCM) integrates these data and methods to project residential and commercial
development, along with farmland and forest conversion (Claggett et al. 2023; Figure 3).

Populaton — mployment
Projections ; Projections
Housing Infill/
Demand Redevelopment :
Density i Land Suitable for
Assumptions development
U.S. Census
1980 - 2010
Residential and Commercial Land Demand
Urban-----—-----Suburban -——-Rural
Development
Location, Extent, and Probability of
Patterns development
1984 - 2006

Figure 3. Predicted 2020 commercial development probabilities produced by the Chesapeake Bay Land Change Model
(CBLCM), shown alongside observed 2020 development for comparison. The results illustrate the model’s application of deep
learning to spatially allocate growth across census blocks (Claggett et al. 2023).

Outputs include estimates of future households, population, and employment by wastewater
service type (sewer vs. septic), with model performance evaluated using quantization and
topographic error measures. Figure 4 shows predicted 2020 commercial development
probabilities from the Chesapeake Bay Land Change Model alongside observed 2020
development, illustrating how well the model captured actual growth patterns (Claggett et al.
2023).
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Figure 4. Predicted 2020 commercial development probabilities produced by the Chesapeake Bay Land Change Model,
illustrating application of deep learning to allocate growth across census blocks (Claggett et al. 2023).

Advances in Water-quality Predictions: Datasets and Learning Frameworks — Shuyu Chang
(PSU)

The Integrated Watershed Attributes and Nutrient Data (IWAND) dataset was introduced as a
new benchmark resource to support large-scale predictions of riverine nutrient concentrations
(Chang et al. 2025). IWAND builds on earlier efforts such as Catchment Attributes and
Meteorology for Large-sample Studies (CAMELS; Addor et al. 2017) and the Catchment
Attributes and Meteorology for Large-sample Studies — Chemistry (CAMELS-Chem; (Sterle et
al. 2025) dataset; CAMELS-Chem augments the original CAMELS framework by adding
stream-water chemistry and atmospheric deposition data for hundreds of U.S. catchments.
IWAND incorporated in-situ records, catchment attributes, nutrient inputs, and climate forcing.
Compared to prior benchmarks, IWAND offers more extensive records per site, broader spatial
and temporal coverage, and improved representation of human influences, making it a robust
foundation for developing and testing water-quality prediction models (Chang et al. 2025).

The presentation emphasized the importance of large-sample hydrology and continental-scale
(CONUS-wide) datasets for advancing water-quality modeling. By leveraging Al methods with
extensive benchmark datasets, it is possible to improve predictive accuracy and enhance physical
understanding of biogeochemical processes across diverse watersheds. These capabilities are
particularly relevant for regional systems such as the Chesapeake Bay watershed, where
advances in nutrient prediction can inform management strategies and support ongoing progress
in water-quality restoration.

Modeling Light Conditions in the York River Estuary by Anchoring Satellite Imagery with High-
Frequency In-Situ Observations — David Parrish (VIMS)

This presentation described efforts to model light conditions in the York River estuary by
anchoring satellite imagery with high-frequency turbidity data collected from the Chesapeake
Bay National Estuarine Research Reserve (CBNERR)-VA/VIMS Dataflow platform (Virginia
Estuarine & Coastal Observing System, 2025). The Dataflow system provides surface
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observations every 2—3 seconds, producing thousands of turbidity measurements per day along
vessel transects. These in-situ data were paired with PlanetScope satellite imagery (~3 m
resolution, eight spectral bands, near-daily coverage since 2022). Atmospheric correction with
ACOLITE was applied to generate surface reflectance inputs for modeling (Vanhellemont and
Ruddick, 2016).

Random forest regression was used to estimate turbidity from the eight surface reflectance bands
(Figure 5; Parrish et al. 2025). This method handles non-linear relationships and interactions
between variables without distributional assumptions. Block cross-validation was applied to
reduce the influence of spatial autocorrelation by creating spatially independent training and
testing subsets. Results from multiple sampling dates in 2023—-2024 indicated that the random
forest approach can reproduce turbidity patterns when anchored to dense in-situ measurements.
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Figure 5. Random forest regression with block cross-validation applied to estimate turbidity in the York River estuary from
PlanetScope surface reflectance anchored with Chesapeake Bay National Estuarine Research Reserve (CBNERR)-VA/VIMS
Dataflow measurements; Dataflow: 03/29/2023, 05/21/2024, 05/22/2024, 06/20/2024, 06/21/2024 (modified from Parrish et al.
2025).

Next steps include expanding beyond turbidity to estimate the light attenuation coefficient (Kd),
which forms the basis of Chesapeake Bay water clarity standards. This requires a hierarchical
modeling approach linking Kd to turbidity, chlorophyll, and CDOM/salinity. Further work could
include quantifying error in turbidity - and Kd-based estimates and addressing both spatial and
temporal autocorrelation. Although PlanetScope imagery has only been available in the Bay
since 2022, the data provide a freely available, high-resolution resource for advancing water
clarity assessments.

Physical Habitat is More Than a Sediment Issue: A Multi-dimensional Habitat Assessment
Indicates New Approaches for River Management — Matthew Cashman (USGS)

This presentation highlighted experiences, motivations, lessons learned, difficulties, and other
considerations with ML from the recent publication, "Physical habitat is more than a sediment
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issue: A multi-dimensional habitat assessment indicates new approaches for river management”
(Cashman et al, 2024).

Because physical habitat and sediment are major stressors for stream health in the Chesapeake
Bay, the study predicted habitat quality across the watershed using metrics familiar to local
stakeholders. It identified two distinct clusters and dimensions of physical habitat, highlighting
related metrics and the hydrologic processes that support them. By overlaying these model
outputs with models of suspended sediment and flow alteration, the study concluded that
management actions focusing solely on restricting sediment - without addressing flows or in-
channel hydromorphic diversity - are unlikely to improve the habitat metrics.

Challenges included the quality of source data - as the habitat metrics modeled were visually
scored, semi-quantitative methods, with field-based uncertainty accounting for ~80% of the
uncertainty in the final ML models.

Most important, the presenter emphasized the challenges of using machine-learning methods to
answer causal, cause-effect, and counterfactual questions. Referring to Judea Pearl’s causal
hierarchy framework (Pearl 2009), the presenter explained that most traditional ML operates at
the lowest, associative level of the hierarchy and struggles to answer causal questions accurately
(Bareinboim et. al, 2022). Instead, causal inference techniques—designed specifically for causal
questions such as cause-effect interventions and counterfactual thinking (e.g., outcomes under
alternative scenarios)—are used in fields like public health, medicine, and econometrics and are
now emerging in ecology, hydrology, and earth sciences (Kratzert et al. 2019).

The presentation highlighted several subfields of causal inference, such as causal discovery and
causal ML, listing various modeling methods and introductory textbooks on the topic. Despite
his engagement with the field over the past year and a half, the presenter concluded that causal
ML is rapidly developing and not all methods are suitable or have ‘off-the-shelf” accessibility,
staying up-to-date on developments in the field can help address future management questions.

Observed and Projected Functional Reorganization of Riverine Fish Assemblages from Global
Change — Taylor Woods (USGS)

This presentation focused on two forecasting projects that apply ML to assess ecological and
hydrologic changes under scenarios of climate and land-use change scenarios. The ecological
component used random forest models to predict habitat suitability of fish functional groups,
classifying abundances as low, medium, or high across multiple future scenarios. Results
suggested that species with generalist, warm-water, fine-substrate, and slow-water traits are
projected “winners,” whereas cold-water, clean-substrate, fast-water taxa are likely “losers”
(Figure 6).
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Figure 6. Ecology model results showing projected “winner” and “loser” traits of fish communities under climate and land-use
change scenarios.

The hydrologic component evaluated how climate and land-use change will affect flow regimes.
Random forests with temporally lagged predictors performed similarly to or better than neural
networks, demonstrating predictive power while maintaining interpretability. However, data
limitations, particularly small biological sample sizes, pose constraints, and uncertainty in
applying ML outputs to ecological models remains an ongoing challenge. The work highlights
both the promise and limitations of ML approaches for Chesapeake Bay forecasting applications.

Images to Info: the USGS Flow Photo Explorer — Jenn Fair (USGS)

The USGS Flow Photo Explorer (FPE) Tool is a web platform that supports a stream monitoring
network for small streams (https://www.usgs.gov/apps/ecosheds/fpe). It features a data system
that allows users to upload images collected with low-cost trail cameras, an annotation tool for
allowing users to rank pairs of images, and a deep learning model that learns from these
annotations to predict a relative streamflow hydrograph. The Flow Photo Explorer (FPE)
platform currently has more than 350 users from state, federal and tribal agencies, universities,
non-governmental organizations, local municipalities, and other private organizations and
individuals. The FPE data system currently stores over 6 million images and over 300,000
annotations, and hosts approximately 70 models predicting streamflow dynamics. A recent
evaluation of deep learning model performance indicates that the FPE data system will be useful
as a low-cost, non-contact method for monitoring streamflow dynamics in under-monitored,
dynamic and particularly vulnerable headwater streams (Goodling et al. 2025).
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Leveraging Machine-learning and Expert Knowledge to Unravel the Complexities of Multiple
Freshwater Ecosystem Stressors — Sean Emmons (USGS)

This presentation described the use of AI/ML to evaluate multiple interacting stressors on
freshwater ecosystems in the Chesapeake Bay watershed. The overarching research question
addressed was: What are the key stressors affecting stream health, and do these vary regionally?
Goals included identifying hierarchical effects of stressors on benthic macroinvertebrate
indicators, predicting biological responses under different stressor conditions, and developing a
spatial prioritization framework to support watershed conservation and restoration.

The approach combines expert knowledge with Bayesian network learning to identify driver—
stressor—response relationships. This involves structure learning, model averaging, and
bootstrapped networks, while integrating prior ecological knowledge to constrain connections
(Figure 7). By retaining only consistent relationships across bootstraps, the method improves
confidence in causal links. The framework supports predictions of how biological metrics will
change under stressor scenarios and enables prioritization of management actions such as
resisting, directing, or accepting change.

Causal Discovery: Bayesian Network Learning approach
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Figure 7. Conceptual hierarchy of stressors and biological responses in stream ecosystems, showing how temporal, spatial,
climatic, land-use, and hydromorphic drivers influence instream habitat, water-quality stressors, and ultimately benthic
macroinvertebrate responses.

This work directly addresses needs identified by the CBP’s Stream Health Workgroup and
illustrates the potential of causal discovery techniques to guide restoration planning under
complex, interacting stressors.
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Session I1I: Develop recommendations and identify opportunities for harnessing the power
of AI/ML approaches to address Chesapeake Bay issues

This session focused on developing recommendations and identifying opportunities to expand
the role of AI/ML in restoration of Chesapeake Bay tidal and non-tidal regions. Participants
discussed where the CBP partnership could benefit most from these approaches, emphasizing
their potential to generate new insights and support more efficient decision making. The group
also considered strategies for delivering AI/ML outputs to managers in clear and actionable
ways, along with guidelines for standardizing and streamlining how AI/ML methods are applied
to monitoring data. Finally, the session highlighted opportunities to strengthen collaboration and
build synergies among partners to accelerate the integration of AI/ML into Bay science and
management. Invited presentations in this session included:
e Chaopeng Shen (PSU) — State-of-the-Art Al & Physics-Informed ML in Hydrology and
Water-quality: Insights and synergies
e Dong Liang (UMCES), Chaopeng Shen (PSU), Vandana Janeja (UMBC), Kelly Maloney
(USGS), Robert Sabo (EPA), Alison Appling (USGS) — AI/ML Community
Development (Panel)

State-of-the-Art Al & Physics-Informed ML in Hydrology and Water-quality: Insights and
Synergies — Chaopeng Shen (PSU)

Chaopeng Shen presented advances in integrating ML with process-based hydrologic and water-
quality models. Traditional neural networks, such as LSTMs, have shown predictive skill for
variables like dissolved oxygen (DO) and nutrients but face limitations in interpretability,
transferability, and performance in data-scarce or extreme conditions. To address these gaps,
Shen’s group developed differentiable parameter learning (dPL), which links neural networks
with governing equations to constrain learning. Their framework is illustrated in Figure 8, which
shows two dPL workflows alongside a traditional calibration approach.
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Figure 8. (a) A deep learning model is trained to mimic the outputs of a process-based model (PBM). This step is optional
because one may also directly implement the model in a DL platform. (b) Workflow of the first differentiable parameter learning
(dPL) option for deep neural network gA: parameters are inferred by a network (in our case, a separate LSTM network) based on
auxiliary attributes. These parameters are then sent into the PBM, whose outputs are compared to the observations to calculate
the loss (the difference between objective function and observation). (c) Workflow of the second dPL option for deep neural
network gZ: historical observations (meteorological forcings and observed responses) are additional inputs to the parameter
estimation network. (d) Traditional site-by-site parameter calibration framework. Reproduced from W. Tsai et al. (2021).

Shen emphasized the potential for these methods in Chesapeake Bay water-quality modeling,
where they can provide scale-relevant predictions, link landforms and management practices to
outcomes, and incorporate uncertainty quantification. He also highlighted spectral convolutional
Fourier Neural Operators (SC-FNOs) as a promising tool for solving partial differential
equations (PDEs) orders of magnitude faster than traditional models, with improved sensitivity
for parameter inversion. These approaches offer transferable, interpretable, and efficient tools for
large-scale forecasting and management support.

Panel: AI/ML Community Development — Dong Liang (UMCES), Chaopeng Shen (PSU),
Vandana Janeja (UMBC), Kelly Maloney (USGS), Robert Sabo (EPA), Alison Appling (USGS)

A powerful variety of highly predictive AI/ML models can be readily applied to improve the
CBP’s understanding of fundamental processes that drive watershed and estuarine conditions.
With the large diversity of potential applications, however, the path forward for effectively
leveraging AI/ML across scales and disciplines is still being defined. One key motif that
emerged when discussing a path forward was the need for meaningful partner engagement
throughout the conception, development, and application of AI/ML products, a process known as
co-production, in which technical tools and analyses are created collaboratively with end users to
ensure their relevance and usability. By working with targeted CBP workgroups or other key
stakeholders in the Bay watershed, research groups looking to inform the CBP can better define
what key questions need to be addressed as well as the key research products that stakeholders
need to make the research actionable.

During these discussions, questions about spatial and temporal scale, endpoint(s) of interest, the
desired predictive ability vs. explainability, and others were explored. In these conversations
with Bay partners, the panel discussion highlighted an opportunity to identify new and cultivate
existing synergies across research disciplines and management domains. Before proceeding with
AI/ML analyses, it would be helpful to determine what enhancement and contribution the AI/ML
application can make to the current suite of existing models and tools (besides only being more
predictive) and identify collaborators who can assure effective and accurate integration of
environmental information into the models. AI/ML’s looser model structure, ability to better
handle some co-linearities across predictors, large information needs, and ability to accurately
describe multiple environmental phenomena allow it to integrate multiple predictor datasets that
span environmental disciplines. These characteristics serve as a platform for promoting inter-
disciplinary collaborations and stakeholder engagement. Also, improvements in explainable
AI/ML features, like the use of Shapley values, partial dependent plots, and other metrics/tools,
highlight the opportunity for these models to be more wholly interpreted by inter-disciplinary
teams. The final key points that was highlighted by the panel discussion were the need to the
availability of model code and the production and availability of needed predictor-response
variable datasets, the latter of which sounds conceptually simple but is computationally difficult.
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Providing access and packaging the CBP partnership’s preferred predictor data (e.g., Chesapeake
Assessment Scenario Tool (CAST) matched to Nontidal Monitoring (NTN) network stations and
available at NHD+ scale) will ensure AI/ML research groups are using the best available, locally
tailored data that the CBP has approved to track progress. Developing computationally efficient
methodologies to adjust other non-CBP datasets to scales of interest will be key as well because
AI/ML can take advantage of other ancillary environmental information from OPEN Library and
other open data sources (e.g., Stream-Catchment (STREAMCAT) dataset). In closing, the panel
discussion highlighted that AI/ML can be leveraged to help communities understand drivers of
local water-quality and habitat while also providing inference into broader watershed and
estuarine ecological conditions - conditions that can be restored through partner engagement.
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Breakout Group Discussions

On the second day of the workshop, participants took part in structured breakout sessions
designed to explore the workshop’s three objectives in greater depth. Each group (including one
that met virtually) discussed a common set of guiding questions, with the aim of identifying
shared themes, key challenges, and potential paths forward. The conversations concluded with
brief report-outs to the full workshop audience.

The guiding questions for these breakout sessions were:
e Objective 1
o In what ways can AI/ML approaches be applied (or have already been applied) to
issues relevant to Chesapeake Bay restoration?
o What advantages and limitations do AI/ML methods present compared to more
traditional approaches?
e Objective 2
o What challenges or gaps have you experienced when applying AI/ML in the
Chesapeake Bay context (or in related fields)?
o What strategies have you used, or could be used, to address these challenges?
e Objective 3
o What are the primary barriers to broader adoption of AI/ML in Chesapeake Bay
research and management?
o What kinds of forums, workshops, or working groups could help foster
collaboration among AI/ML researchers, Bay scientists, and resource managers?

The following sections summarize the discussions across groups for each objective, highlighting
common observations, areas of divergence, and opportunities for further research and
collaboration; full breakout group responses are available to review in Appendix D.

Objective 1

Breakout groups identified a range of current and potential applications of AI/ML relevant to
Chesapeake Bay restoration. Examples included tracking agricultural BMPs on croplands,
recalibrating land-use layers in Pennsylvania, evaluating BMP performance, informing
swimming advisories, and predicting habitat conditions. The USGS Flow Photo Explorer Tool
was cited as an example of using ML to monitor streamflow dynamics in small systems,
including stormwater BMPs. Groups also noted that AI/ML can be applied in intermediate steps
of modeling workflows (e.g., preparing data for integration), not just in end-point predictions.

Participants emphasized that AI/ML techniques are well suited to integrating diverse datasets
such as satellite imagery, in-situ monitoring, and high-frequency sensor data. These approaches
are scalable and robust, with the ability to capture non-linear and complex interactions. Models
trained on national-scale datasets have in some cases outperformed those built strictly on
Chesapeake Bay-focused data. However, groups agreed that excessive diversity in training data
can dilute meaningful signals, and that a moderate level of diversity is most effective to avoid
overfitting. AI/ML can also support data harmonization and fill spatial and temporal gaps in
existing monitoring. Incorporating non-Bay datasets was seen as a way to strengthen models by
providing additional variability and context.
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In comparison to process-based models, AI/ML methods are generally more flexible and
accessible, requiring less reliance on domain-specific expertise. However, participants cautioned
that these approaches should be viewed as complementary rather than as replacements for
mechanistic models. Limitations identified included the lack of interpretability (“black box”
issues), the potential for spurious inferences, and challenges in communicating results to
managers and stakeholders. Quantification and transparent communication of uncertainty were
noted as areas where AI/ML approaches currently lag behind traditional statistical methods. The
rise of broadly available tools such as ChatGPT has increased public awareness of AI/ML but
has also contributed to misperceptions about the capabilities and limitations of these approaches
in technical and management contexts.

Groups also discussed challenges related to data scale and uniformity. Excessive heterogeneity in
training data can obscure signals, and narrowly focused datasets may reduce transferability.
Debates also centered on the advantages of raw versus derived data as model inputs. The
consensus was that careful attention to input data, supported by collaboration between data
scientists and domain experts, is essential for producing reliable outcomes.

Across discussions, participants reiterated that management decisions ultimately depend on
understanding the effectiveness of practices. Although AI/ML approaches do not resolve all
challenges, they were viewed as valuable tools for addressing persistent limitations in Bay
restoration science and management.

Objective 2

Although the Chesapeake Bay is considered a data-rich system, groups identified several
limitations that constrain the application of AI/ML. Key issues include mismatches in spatial and
temporal scales between predictor and response variables, uneven temporal coverage, and gaps
in problem-relevant data. Variation in data quality and ontology further reduces model reliability
and transferability.

Challenges with data cleanliness and harmonization were also noted. Inconsistent metadata,
unclear coding standards, and lack of standardization complicate reproducibility. Model
inception (where outputs from one model are used as inputs to another) was described as a risk
because errors can be compounded. Participants also highlighted the danger of models producing
apparently correct results for the wrong underlying reasons, underscoring the need for careful
feature selection and evaluation. Practical solutions included dropping sites with missing data or
enabling users to flag problematic records.

Uncertainty was identified as one of the most difficult gaps to address. Current AI/ML methods
have limited tools for quantifying and communicating uncertainty in ways that support
management decisions. Visual and numerical approaches remain underdeveloped, which reduces
confidence in model results.

Several remedies were suggested. Continued investment in data harmonization was emphasized,

with the NTN concentration data synthesis effort cited as a promising example. Expanding the
Chesapeake Bay Data Hub to include both monitoring data (e.g., temperature, point sources) and
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modeling outputs (e.g., CAST) was recommended. Other proposed approaches included the use
of off-the-shelf image screening models, more systematic use of metadata (potentially supported
by generative Al tools), and causal DL techniques to improve interpretability. A glossary of
AI/ML terminology, already initiated within the CBP, was also cited as a step toward building
shared understanding.

Objective 3

A central barrier to broader adoption of AI/ML in Chesapeake Bay applications is
interpretability. Black-box models may undermine trust and can be difficult for managers to act
upon, especially in a program that has long relied on process-based approaches. Developing
interpretable methods and clearer approaches for communicating results were highlighted as
important priorities.

Broader acceptance is also shaped by public perceptions. Many audiences associate Al with
media narratives that emphasize risks, which can create skepticism. Education and outreach,
ranging from vocational training to student programs, were seen as important for building
familiarity and demystifying these methods. Ideas such as community “hackathon” challenges
were proposed as ways to encourage engagement and identify key response variables.

Institutional and data-related barriers remain significant. AI/ML researchers and process-based
model developers often work in disciplinary silos, limiting collaboration. Engaging CBP goal
implementation teams (GITs) and workgroups early was recommended to align AI/ML efforts
with management priorities. Participants also emphasized that strong national-scale models must
be paired with fine-scale local monitoring to capture variability and transferability.

Avenues for advancing collaboration were identified. Pairing AI/ML with data visualization was
recommended to make complex results more accessible. A dedicated informal network,
tentatively called Ches-BRAIN (Chesapeake Bay Research with Artificial Intelligence and
Networking), was suggested as a forum for researchers, modelers, and managers. Existing
venues such as the Chesapeake Community Research Symposium (CCRS), HydroML
Symposium, the Association of Mid-Atlantic Aquatic Biologists (AMAAB), and future STAC
workshops were all viewed as important platforms. The Remote-sensing Workgroup was
identified as a place where AI/ML applications could be introduced directly into CBP activities.
Participants also discussed the potential value of a “front desk” chatbot or curated Al system,
modeled after the historic Chesapeake Community Monitoring Network catalogue (Chesapeake
Research Consortium, 2022), to help managers and researchers navigate the CBP’s extensive
data and modeling resources. Overall, participants agreed that adoption of AI/ML will depend
not only on technical progress but also on improving transparency/trust and cross-disciplinary
collaboration within the Bay community.
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Recommendations

1. Strengthen data infrastructure and integration for AI/ML applications

Harmonize spatial and temporal datasets across programs and ensure consistent metadata.
Leverage diverse datasets, including satellite, in-situ, and high-frequency data, for use in
modeling and monitoring applications and filling water-quality data gaps.

Design monitoring and data processing efforts so that resulting products are problem-
relevant and can be readily incorporated into AI/ML workflows.

Build harmonized response and predictor datasets and develop example use cases to
guide widespread AI/ML applications.

2. Leverage AI/ML for restoration of Chesapeake Bay tidal and non-tidal regions and
decision support

Use AI/ML to assess restoration practice effectiveness, evaluate progress, and identify
drivers of change.

Enhance watershed and estuarine models by integrating AI/ML model outputs and
insights.

Promote integration between AI/ML and traditional monitoring, analysis, and modeling
approaches to enhance scientific credibility and transparency.

Develop accessible Al-driven tools (e.g., Chesapeake-specific LLMs) for scenario
planning to help identify management priorities.

3. Promote transparency and engage managers and stakeholders

Advance explainable AI/ML and uncertainty protocols so that results are interpretable,
credible, and trusted.

Couple AI/ML with tailored data visualizations to improve interpretability and use at
broader scales.

Foster close engagement of managers and decision makers at all stages of co-production
with AI/ML projects to ensure products align with management priorities and can be
effectively applied.

Use tailored communication strategies to translate AI/ML insights into actionable
guidance for restoration planning.

4. Build collaboration and capacity

Establish a Chesapeake Bay AI/ML network (e.g., Chesapeake Bay Research with
Artificial Intelligence and Networking or “Ches-BRAIN”) to foster collaboration and
provide a clear place where managers and others can easily find and connect with AI/ML
experts.

Encourage development of participatory science events (e.g., hackathons) to spark
innovation, strengthen cross-sector collaboration, and provide opportunities for students
and early-career professionals to engage in applied problem solving.

Invest in training and literacy programs so that scientists, managers, decision makers, and
students/job seekers can effectively use and interpret AI/ML tools and outputs,
supporting workforce development pathways across the Bay watershed.
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APPENDIX A: Workshop Agenda

Participant List: Mentimeter: Feedback Survey:

bit.ly/STACAIlparticipants bit.ly/STACAImentimeter bit.ly/STACAIfeedback

Chesapeake Bay Program’s (CBP)
Scientific and Technical Advisory Committee (STAC)
Workshop
Leveraging Artificial Intelligence and Machine Learning to
Advance Chesapeake Bay Research and Management
February 24-25, 2025
Smithsonian Environmental Research Center
Mathias 1013
Workshop webpage

**Exact Times Are Subject to Change**
This meeting will be recorded to assure the accuracy of meeting notes.

This STAC workshop is aimed at providing a unique opportunity for researchers and managers to gather
and review the state of the science on Al/ML approaches and their potential to advance Chesapeake Bay
research and management. The workshop will focus on three main objectives:
I.  Summarize recent Al/ML applications to the Chesapeake Bay ecosystem and lessons learned;
Il.  Identify the challenges and gaps in applying Al/ML approaches to Chesapeake Bay data; and
lll.  Develop recommendations and identify opportunities for harnessing the power of Al/ML
approaches to address Chesapeake Bay issues.

Monday, February 24, 2025

9:00 am Coffee & Light Breakfast (Provided)

9:45am Welcome and Introductions — Meg Cole (CRC)
STAC Coordinator, Meg Cole, will outline the workshop logistics and facilitate brief
introductions from all participants.

10:00 am Workshop Overview and Motivations — Qian Zhang (UMCES)
Workshop Chair, Qian Zhang, will provide context for the workshop, including its
purpose, objectives, and key motivations.

I: Summarize recent Al/ML applications to the Chesapeake Bay ecosystem and lessons learned
This session will synthesize recent applications of artificial intelligence and machine learning (Al/ML) within the
Chesapeake Bay region, including both tidal and nontidal areas. The discussion will focus on the objectives of each
study, the rationale for selecting specific Al/ML approaches, the new insights generated through these methods,
and how these findings have (or could) inform restoration efforts in alignment with the Chesapeake Bay
Watershed Agreement goals and outcomes.
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10:15am

10:45am

11:15am

11:30am

12:00 pm

12:30 pm

Introductory Overview of Al and ML — Alison Appling (USGS)

Alison Appling will provide foundational insights into artificial intelligence (Al) and
machine learning (ML), including key definitions, a taxonomy of Al approaches, and an
introduction to several common methods.

Overview of Chesapeake Bay Restoration: CBP Goals & Outcomes — Gary Shenk (USGS)
Gary Shenk will discuss the 10 key goals identified by the Chesapeake Bay Program (CBP)
for ecosystem restoration. While Al is already being used to generate information
supporting these goals, significant opportunities remain for further application.

15-minute Break

Literature Summary of Watershed and Living Resources Studies Involving Al/ML

— Kim Van Meter (PSU) and Kelly Maloney (USGS)

Kim Van Meter and Kelly Maloney will present a summary of existing literature on Al/ML
applications in watershed and living resources studies, highlighting key findings and
trends.

Literature Summary of Estuarine and Living Resources Studies Involving Al/ML
—Jian Shen (VIMS) and Stephanie Schollaert Uz (NASA)

Jian Shen will present a general overview of recent literature on estuarine and living
resources studies involving Al/ML. Following this, Stephanie Schollaert Uz will discuss
Al/ML Integration of Satellite Remote Sensing: Data Harmonization Challenges and
Gaps, focusing on challenges and gaps in data harmonization.

Lunch (Provided)

Il: Identify the challenges and gaps in applying Al/ML approaches to Chesapeake Bay data
This session will explore key challenges and gaps in applying Al/ML to Chesapeake Bay data, including data
limitations such as lack of data or issues with harmonization, insufficient expertise in Al/ML algorithms and
methodologies, unavailability of software code for replication or adaptation, communication barriers in effectively
using or explaining Al/ML-generated insights (e.g., explainable ML), and coordination gaps among research and
management institutions within the Chesapeake Bay Program (CBP) Partnership.

1:30 pm

1:45pm

Introduce Lightning Talk Speakers, Open Mentimeter, and ‘Office Hours’ Structure

— Meg Cole (CRC)

Cole will introduce the lightning talk speakers, launch the Mentimeter interactive
platform for audience engagement, and outline the structure for the upcoming ‘Office
Hours’ poster/session, designed to facilitate focused discussions and collaboration.

Lightning Talks with Q&A (Round 1)

Eight speakers have been invited to share their recent work through concise, 7-minute

presentations. This session will be divided by a 15-minute break following the fourth

speaker. Participants are requested to save questions for the Poster Session at 2:40pm.

e Patrick Bitterman (Kent) — GeoAl and Social Systems Modeling

* Mike Evans (Conservancy) — Integrated Al models to forecast land use change

* Shuyu Chang (PSU) — Advances in water quality predictions: datasets and learning
frameworks

e David Parish (VIMS) — Modeling Light Conditions in the York River Estuary by
Anchoring Satellite Imagery with High-Frequency In-Situ Observations

2
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2:05 pm 15-minute Break

2:20 pm Lightning Talks with Q&A (Round 2)

*  Matthew Cashman (USGS) — Physical habitat is more than a sediment issue: A multi-
dimensional habitat assessment indicates new approaches for river management

* Taylor Woods (USGS) — Observed and projected functional reorganization of riverine
fish assemblages from global change

* Jenn Fair (USGS) — Images to Info: the USGS Flow Photo Explorer

* Sean Emmons (USGS) — Leveraging machine learning and expert knowledge to
unravel the complexities of multiple freshwater ecosystem stressors

2:40 pm Lightning Talk ‘Office Hours' and Workshop Poster Session
Lightning talk speakers and participants are invited to showcase their work during a
poster session in the Atrium of the Mathias Lab.

4:00 pm Wrap-Up and Objectives of Day 2 — Qian Zhang (UMCES)
Qian Zhang will provide a summary of the day’s discussions and outline the objectives
and key focus areas for Day 2 of the workshop.

4:30 pm Happy Hour (Optional)
Join us for refreshments and snacks in the Atrium, following the Office Hours and Poster
Session, to unwind and network with fellow participants.

4:30 pm Day 1 Recess

6:00 pm Dinner Off Campus (Optional)
Participants interested in attending a group dinner are invited to meet in the Mathias
Lab Atrium at 6:00pm to depart together.

Tuesday, February 25, 2025

8:30 am Coffee & Light Breakfast (Provided)

9:00 am Review of Day 1; Objectives for Day 2 — Steering Committee Members

Ill: Develop recommendations and identify opportunities for harnessing the power of Al/ML
approaches to address Chesapeake Bay issues

This session will focus on developing actionable recommendations and identifying opportunities to leverage Al/ML
approaches for Chesapeake Bay restoration. Key areas of discussion include identifying where the Chesapeake Bay
Program (CBP) Partnership can benefit most from Al/ML, brainstorming how Al/ML can generate new insights to
support restoration efforts, and formulating strategies to deliver Al/ML-generated information to watershed
managers in an efficient, understandable, and actionable manner. Additionally, the session will explore guidelines
for standardizing and streamlining the selection and use of Al/ML approaches for analyzing monitoring data, as
well as proposing ways to enhance collaboration and synergies among stakeholders within the CBP Partnership.

9:30 am State-of-the-Art Al & Physics-Informed ML in Hydrology and Water Quality: Insights

and synergies — Chaopeng Shen (P5U)
Chaopeng Shen will present on the evolution of the Al/ML field in the context of
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10:00 am

10:15am

11:15am

12:30 pm

1:30 pm

2:15pm

3:15pm

watershed and estuarine sciences, including emerging directions and opportunities, and
the communication and explanation of results (e.g. xAl).

15-minute Break

Panel: Al/ML Community Development

— Dong Liang (UMCES), Chaopeng Shen (PSU), Vandana Janeja (UMBC), Kelly Maloney
(USGS), Robert Sabo (EPA), Alison Appling (USGS)

Moderated by steering committee member Matt Baker (UMBC), this panel will explore
strategies for fostering synergies, breaking down barriers, and establishing pathways for
ongoing dialogue and collaboration within the Al/ML community.

Breakout Sessions

Participants will move into small groups for further discussion. Group assignments are
random, but each breakout will include a facilitating steering committee member(s), a
notetaker, and individuals involved in the CBP partnership.

Lunch (Provided)

Breakout Groups Report-out
Assigned steering committee members will present key insights and outcomes from
their respective breakout group discussions.

Plenary: Prioritization of High-Level Recommendations

The steering committee will lead a discussion where workshop participants will refine
and identify the highest-priority recommendations emerging from their small group
discussions.

Workshop Adjourns
Steering Committee Meets
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Name Affiliation Name Affiliation
Alison Appling USGS Kelly Maloney USGS
Matt Baker UMBC, STAC Sarah McDonald USGS
Isabella Bertani UMCES Bob Murphy Tetra Tech
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Patrick Bitterman Kent State Uni George Onyullo DC DOEE
Jun Suk Byun UMCES David Parrish VIMS
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Shuyu Chang PSU Julie Reichert-Nguyen | NOAA
Peter Claggett USGS Robert Sabo EPA
Joseph Delesantro EPA CBPO Sheila Saia Tetra Tech
Bill Dennison UMCES, STAC Stephanie Schollaert Uz | NASA Goddard
Gabriel Duran CRC Chaopeng Shen PSU
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Michael Evans Chesapeake Yalan Song PSU
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Xiaoxu Guo UMCES Kim Van Meter PSU
Scott Heidel PA DEP Denice Wardrop CRC, STAC
Admin Husic VT Jimmy Webber USGS
Vandana Janeja UMBC Allison Welch CRC
Jared Kroh HRG, Inc. Joe Wood CBF, STAC
Brooke Landry MD DNR Ryan Woodland UMCES
Erin Letavic HRG, Inc., STAC Taylor Woods USGS
Dong Liang UMCES Qian Zhang UMCES
Lew Linker EPA CBPO Jian Zhao UMCES
Vyacheslav Lyubchich UMCES




APPENDIX C: List of Figures and Tables

Figure 1. Conceptual Venn diagram illustrating the relationship among artificial intelligence
(AI), machine-learning, neural networks, deep learning, and generative Al............cccecuveeureennennne. 7

Figure 2. (a) Submerged aquatic vegetation (SAV) classification and extent using WorldView-2
imagery (1.84-m resolution, six visible bands) for Mobjack Bay, VA, on May 4, 2015, overlaid
with reference data delineating seagrass percent cover obtained from Virginia Institute of Marine
Science (VIMS) in May through November 2025. (b) Results of an image classification with
classes for land, no data, SAV, and no SAV. Source: Coffer et al. 9(2023). .....cccvvvvrecrvenreenen. 10

Figure 3. Predicted 2020 commercial development probabilities produced by the Chesapeake
Bay Land Change Model (CBLCM), shown alongside observed 2020 development for
comparison. The results illustrate the model’s application of deep learning to spatially allocate
growth across census blocks (Claggett et al. 2023). ......ccciiiiiiieiiieeieeeeeee e 12

Figure 4. Predicted 2020 commercial development probabilities produced by the Chesapeake
Bay Land Change Model, illustrating application of deep learning to allocate growth across
census blocks (Claggett et al. 2023). ....ccueiiiiiiiiieiieeee e 13

Figure 5. Random forest regression with block cross-validation applied to estimate turbidity in
the York River estuary from PlanetScope surface reflectance anchored with Chesapeake Bay
National Estuarine Research Reserve (CBNERR)-VA/VIMS Dataflow measurements; Dataflow:
03/29/2023, 05/21/2024, 05/22/2024, 06/20/2024, 06/21/2024 (model results from Parrish, 2025,
UNPUD. AALA)...c.eiiiiietie ettt ettt et et e et e e bt e st e e bt e et e e bt e eabeenneeenbeenneeenreas 14

Figure 6. Ecology model results showing projected “winner” and “loser” traits of fish
communities under climate and land-use change Scenarios. ...........cceceerieeiienieeiiienie e 16

Figure 7. Conceptual hierarchy of stressors and biological responses in stream ecosystems,
showing how temporal, spatial, climatic, land-use, and hydromorphic drivers influence instream
habitat, water-quality stressors, and ultimately benthic macroinvertebrate responses. ................ 17

Figure 8. (a) A deep learning model is trained to mimic the outputs of a process-based model
(PBM). This step is optional because one may also directly implement the model in a DL
platform. (b) Workflow of the first differentiable parameter learning (dPL) option for deep neural
network gA: parameters are inferred by a network (in our case, a separate LSTM network) based
on auxiliary attributes. These parameters are then sent into the PBM, whose outputs are
compared to the observations to calculate the loss (the difference between objective function and
observation). (¢) Workflow of the second dPL option for deep neural network gZ: historical
observations (meteorological forcings and observed responses) are additional inputs to the
parameter estimation network. (d) Traditional site-by-site parameter calibration framework.
Reproduced from W. Tsai €t al. (2021). c.eoeiuiiiiieiiieieie ettt 19
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APPENDIX D: Breakout Group Responses by Group

During the workshop, breakout groups addressed two key questions under each of the three
objectives below. These discussions helped identify opportunities, challenges, and actionable
steps for leveraging AI/ML in Chesapeake Bay restoration efforts. The responses informed the
workshop's summary of recommendations for advancing AI/ML integration in Chesapeake Bay
initiatives. Participants were split into in-person breakout groups and one virtual breakout group.

Below are all responses under each breakout question, across all breakout groups.

1. Objective 1: AI/ML Applications and Lessons Learned
a. How can AI/ML approaches be leveraged (or have been used) to address issues in the
context of the Chesapeake Bay restoration?

Track BMPs on croplands in PA, ID area to recalibrate LU layer (PA); evaluate
performance of BMPs, inform swimming advisories, USGS Flow Photo Explorer

Tool for monitoring streamflow dynamics in small systems + stormwater BMPs,
predictive modeling for habitat condition

AI/ML has already been applied across various domains relevant to the Bay
Agreement

AI/ML is highly effective in leveraging multi-scale data sources, including satellite
imagery, in-situ monitoring, and high-frequency measurements

AI/ML can be used to bring in non-Chesapeake Bay data

AI/ML can be used to prepare data for intermediate steps (rather than final step)
AI/ML can be used to develop large, tempo-spatial models for water-quality (N, P, S)
AI/ML can be used to incorporate satellite remote-sensing data for bridging
monitoring gaps, particularly those related to WQS indicators

Multi-scale

As data preparation, to better synthesize and represent data - step in the process rather
than final result

Create synergy between two or more different types of data

Better capture/quantify processes

Developing water-quality spatial-temporal model

Understanding best model to use

Broad, national-scale models can be refined for Chesapeake Bay, which helps avoid
overfitting and improves learning beyond the watershed boundary

AI/ML benefits from exposure to diverse datasets, with base dynamics carrying over
across systems. Data from outside the Bay can reinforce and refine models developed
for local use

Smaller-scale modeling is still valuable to capture variability that gets averaged out in
broader datasets

AI/ML can be designed to act as a user-facing tool (similar to a “front desk” or
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chatbot) that retrieves answers, connects users to the best model, and synthesizes
complex information into simple responses

e Lots of current and potential examples

e Effect of management practices

e Find Al fixes for some of the problems identified
b. What are some of the advantages and disadvantages of AI/ML compared to other
established approaches?

Compared to process-based approaches, AI/ML algorithms are generally easier
to learn, adopt, and implement. However, it is not to replace traditional
approaches

AI/ML models are flexible, data-driven, and do not require much domain
knowledge, and are gaining momentum and public perception/awareness
Explainability of AI/ML results to management/stakeholders is a major issue
Uncertainty quantification of AI/ML is lagging traditional statistical approaches
Advantages: flexible at learning, high performance and predictability public
popularity, communication tool, better able to handle multiple variables,
unconventional uses, identifying oddballs, point sources

Disadvantages: uncertainty quantification, model hallucinations, being able to
justify, address management/stakeholder concerns

AI/ML can handle large, diverse datasets and create connections across different
domains, offering flexibility and predictive power

Too much diversity in training data can dilute outputs; moderate diversity is
often more effective

Small-scale heterogeneity may be lost in broader datasets, raising questions
about when uniformity is important versus when finer detail adds value

AI/ML outputs may be shallow compared to domain expertise, with limited
depth in specialized questions

Advantage - take large data and boil down to make conclusion, scalable,
portable (robust), ability to capture dynamics (pattern/trend detection), and non-
linear complicated interactions

Disadvantage - demand can be high in set-up, at the local-level need more
improved data sets; black box; can infer information about variables that isn’t
there; may behave in ways that make it difficult to evaluate; high concept but
may not be understandable at local levels

2. Objective 2: Challenges and Gaps in AI/ML Implementation

a. What challenges or gaps have you encountered when applying AI/ML in the context of
Chesapeake Bay (or elsewhere)?

e Data cleanliness; model inception - incorporate models into models, can create
compounded errors (not unique to Al); calculating and articulating uncertainty - not
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sure how to *show uncertainty; estimation under different scenarios - will be
dependent on variables used in model training and can be unstable. Learn right
thing for wrong reason, teasing out ‘why’

Availability of data, even for the Chesapeake which is considered a data-rich
system

Availability of features data matched to response data at consistent spatial and
temporal scales

Lack of standardization in selecting AI/ML methods, requiring a balance between
model accuracy and interpretability

Response variables are not matched on a regular basis

Need more monitoring/data collection to run models

Outside datasets are not always “Al-ready,” requiring additional preparation and
alignment

Hydrologic data can vary by scale; small-system heterogeneity may not be captured
in regional datasets

Watershed divides and boundaries shift in newer datasets, creating mismatches with
existing models

Missing predictor and response variables limit model performance, while
inconsistencies in coding and uniformity remain an issue

Social systems behave unpredictably compared to physical processes, making it
harder to define predictors and responses

b. What have you done (or may be done) to address the challenges and gaps?

Allocate resources for data harmonization of input data (e.g., the USGS NTN
concentration data) and make those data available with data releases (including
metadata)

Advance the Data Hub for Chesapeake Bay researchers and managers by including
both monitoring data and modeling data (e.g., CAST, temperature, point source),
and making those data available to users

Promote/allocate resources to data harmonization

Curating and unifying datasets can improve both predictor and response variables,
with potential for additional requirements to standardize inputs

Tools can be designed to generate watershed boundaries directly from maps,
simplifying data extraction for users

Customized Al systems curated to Chesapeake Bay assets could summarize existing
information and guide users to the right datasets or models

Dialogue between data scientists and domain experts is essential for defining
necessary predictor variables and ensuring models have depth

Gaps in predictors: can drop the sites, enable users to flag data

Use off-the-shelf pre-built image screening models
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o Effective ways to use meta-data (potentially through generative Al)
e (maybe) Causal deep learning techniques

3. Objective 3: Recommendations and Future Opportunities
a. What are the biggest barriers preventing broader AI/ML adoption in Chesapeake research
and management?

e ML should be paired with data visualization

e Takes time and expertise to effectively communicate across groups; silos across
fields (i.e., medical models)

e What is meant by Al can be unclear and scary! Need to define what Al is and how
it is being used in the context; should popularize its use (i.e., educate students,
vocational training programs); social/human side to implementation

e Data availability for AI/ML

e Disciplinary barriers between AI/ML researchers and process-based model
developers hinder integration and collaboration

e Engage with CBP workgroups and the Water Quality GIT early and consistently to
align AI/ML applications with their priorities and goals, and keep the decision
makers in mind

e Enhance communication of AI/ML findings to managers and decision makers to
support informed policy and management actions (e.g., XAl approaches)

e Data availability and utility

e Communication between people (modelers, statisticians, decision makers, etc.)

e Expertise

e Engagement strategies

e High ambitions for the models

e Lack of alignment between available data and model needs (predictors vs.
responses, spatial vs. temporal scales)

e Limited ability of generalized Al tools to provide deep, domain-specific insights

e Social science variables are harder to model because of unpredictable human
behavior and rapid changes in system representation

e Data preparation and labeling need to improve for Al to be fully effective

e Acceptability to stakeholders

o Interpretability => use interpretable methods
o Newness => speed of development facilities stakeholder interaction
Data
Uneven temporal and spatial distribution
Lack of problem-relevant data
Unclear ontology and varying quality
May be an Al solution to these problems

o O O O
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o Human language queries
o Database standardization monitoring design

b. What forums, workshops, or working groups may be established to foster collaborations
and discussions among different groups of AI/ML researchers as well as between them

and Bay scientists and managers?

Establish an informal workgroup (perhaps similar to the Integrated Trends Analysis
Team (ITAT) and Factors Team) to continue the conversation (e.g., Ches-BRAIN:
Chesapeake Bay Research with Artificial Intelligence and Networking), which may
be led by CBP or USGS

Strengthen collaborations across AI/ML research groups and resource managers
(including HydroML, CGC, USGS, etc), to drive interdisciplinary advancements
Promote community engagement of AI/ML (e.g., community challenge on
identifying response variables, etc)

Collaborate with Factors Team (USGS)

Create Bay Program Machine-learning working group (Ches-BRAIN)

Advertise in journals

Create forum for community engagement (e.g., suggest response variable)

A Chesapeake-focused catalogue or “librarian” system could help managers and
researchers quickly identify relevant datasets and models

Curated AI/ML interfaces could provide both simple answers for managers and
technical detail for researchers, serving as a shared resource

Expanding data cataloguing efforts to include metadata, attribution, and raw data
would improve usability for AI/ML applications

Community engagement efforts could help prioritize response variables and
strengthen collaboration between model developers and CBP stakeholders

Look for scientific discussion opportunities: CCRS, HydroML, Ches-BRAIN,
STAC workshops

CBP GITs/WGs - e.g., introduce USGS Flow Photo Explorer to relevant groups
Conferences: CCMP (Chesapeake Community Research Symposium), Association
of Mid-Atlantic Aquatic Biologists, HydroML
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APPENDIX E: Literature Review Annotated Bibliography

The literature review compiled by the steering committee, consisting of 74 entries, focuses on the
application of artificial intelligence (AI) and machine-learning (ML) techniques to study and
manage environmental and ecological aspects of the Chesapeake Bay and its surrounding
watershed. The studies span a range of topics, including water-quality, coastal ecosystems,
microbial communities, and species populations, with a strong emphasis on leveraging remote-
sensing, satellite data, and in-situ measurements. Techniques such as neural networks, random
forests, clustering, and regression models are commonly employed to predict variables like DO,
nutrient concentrations, chlorophyll a levels, salinity, and total suspended solids. Many of these
works aim to enhance monitoring and forecasting capabilities, offering insights into how
environmental factors (i.e., land-use, climate, and hydrology) interact with biological and
physical processes in the Bay.

A significant portion of the review highlights efforts to address practical challenges in the
Chesapeake Bay region, such as hypoxia, coastal flooding, and habitat conservation. For
instance, studies explore the use of deep learning to model wave spectra, predict storm surges,
and map wetlands or seagrass density, often integrating diverse data sources like Sentinel-2
imagery, MODIS satellite data, and lidar surveys. Other research focuses on biological
conditions, using Al to assess fish assemblages, microbial populations, and phytoplankton
production, or to identify drivers of species abundance and biodiversity. Collectively, the
literature review demonstrates a growing reliance on data-driven approaches to inform resource
management, conservation planning, and policy decisions, reflecting the interdisciplinary nature
of tackling environmental issues in this critical estuarine system.

A screenshot of the Literature Review Sheet is on the following page, and can be downloaded
here. Each article was cataloged by reference information, author affiliations, year of publication,
journal, study focus, AI/ML methods used, and a short description drawn from the abstract. The
compiled dataset provides a baseline resource for understanding the scope of AI/ML applications
to water-quality, ecology, and related environmental challenges in the Chesapeake Bay
watershed.
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1 ._|Bigelow Laboratory for Ocean |V. Klemas 1987 _[Remote Sens. Environ. _[Remote sensing of submerged aquatic vegetation in SAV Clustering Detecting SAV using remote sensing data

2 Kim, G. E., M. S|Kim, G. E. BoozAllen Hamilton M. Steller, S. Olson and (2020 |10th International Modeling watershed nutrient concentrations with Watershed nutrient H20 AutoML Implementing an AutoML pipeline to find the best model and associated parameters for
3 loannou, I., A. {loannou, |. City College of New York A. Gilerson, M. 2014 |Conference on Ocean Algorithms for the remote estimation of chlorophyll-ain_|Coastal water qualit Neural networks Remote estimation of chlorophyll-a concentration [Chl-a] in the Chesapeake Bay from
4 loannou, I, A. City College of New York A. Gilerson, M. 2014 |Conferenceon Remote [Remote estimation of in water constituents in coastal Coastal water quality Neural networks Remote estimations of oceanic constituents from optical reflectance spectra in coastal
5 Yang, C., D. Mil|Yang, C. Florida International D. Mills, K. Mathee, Y. |2006 _|J. Microbiol. Methods An eco-informatics tool for microbial community Microbial community _[Supportvector machines (SVM); K- Profiling microbial community pattems - both SVM and KNN classifiers were effective

6 Meister, M. and|Meister, M. George Mason University J.).Qu 2024 _|Remote Sensing uantifying Seagrass Density Using Sentinel-2 Dataand |Seagrass Naive Bayes (NB); CART; Support uantifying seagrass density using Sentinel-2 satellite data and machine leamning in

7 Evans, M. J., K.[Evans, M. J. George Mason University / K. Mainali, R. Soobitsky, [2023 Biol. Conserv. Predicting patterns of solar energy buildout to identify Solar arrays Neural networks Identifying drivers of solar siting and quantified patterms of buildout in states

8 Deluca, N., B. 4DeLuca, N. Johns Hopkins University B. Zaitchik Zaitchik and 2018 Remote Sensing Can multispectral information improve remotely sensed [Coastal TSS Random forest Investigating whether utilizing additional wavelengths from the Moderate Resolution

9 Deluca, N. M., |DeLuca, N. M. _[Johns Hopkins University B. F. Zaitchik, S. D. 2020 Remote Sens. Environ. Evaluation of remotely sensed prediction and forecast | Vibrio parahaemolyticus|GLM, GAM, etc Using satellite ocean color remote sensing and sea surface temperature (SST) from the
10 Arora-Williams,| Arora-Williams, |Johns Hopkins University C. Holder, M. Secor, H. {2022 Environ. Microbiol. Abundantand persistent sulfur-oxidizing microbial Microbial populations | Clustering Classifying distribution of microbial populations in low-oxygen environments of the B;
11 Urquhart, E. A, |Urquhart, E. A. _[Johns Hopkins University B. F. Zaitchik, M. J. 2012 Remote Sens. Environ. Remotely sensed estimates of surface salinity in the Coastal salinity CART; GLM; GAM; Random forest; Using multiple statistical models to predict daily, gridded surface salinity at 1 km

12 Scardi, M., 199{Scardi, M. Laboratorio di Oceanografia |None 1996 Mar. Ecol. Prog. Ser. Artificial neural networks as empirical models for Phytoplankton Neural networks; regression Estimating phytoplankton production using regression approaches and artificial neural
13 He, Y., B. Bond{He, Y. Lawrence Berkeley National |B. Bond-Lamberty, A. N. [2024 Heliyon Effects of spatial variability in vegetation phenology, Soil respiration Clustering; Random forest; Shapley Understanding the primary driving factors affecting soil respiration within sub-

14 Balasubramani{ Balasubramania [ NASA N. Pahlevan, B. Smith, [2020 |Remote Sens. Environ. | Robust algorithm for estimating total suspended solids | Coastal 1SS Mixture Density Network (MDN Presenting a Statistical, inherent Optical property (IOP)-based, and mulLti-conditional
15 Memarsadeghi,| Memarsadeghi, |NASA S. SchollaertUz, J. R. 2022 International Geoscience |In situ water quality data for the Chesapeake Bay Coastal water qualit Deep learning (no access to full text) Developing new methods for water quality monitoring in the Chesapeake Bay from

16 Schollaert Uz, §Schollaert Uz, S.|NASA T.J). Ames, N. 2020 |IEEE Inteational Supporting aquaculture in the Chesapeake Bay using Coastal water quality Neural networks Artificial Intelligence trained with simultaneous in situ and satellite observations is

17 Ross, A. C. and|Ross, A. C.. NOAA C. A. Stock 2019 Estuar. Coast. Shelf Sci. _|An assessment of the predictability of column minimum | Coastal DO Regression tree Using a machine learning model to assess the predictability of column minimum

18 Daniels, W., T. 4 Daniels, W. Northwestern University / T.Ames, J. B. Clark, S. [2023 |IEEE International ImEroviné extreme value Erediction forwaterclaﬁ' usiné Water clarity. Weighted regression (no access to full |Using arecently published weighted regression approach to alleviate "mean-centric" bias
19 Wang, N., Q. Cf{Wang, N. Northeastern University Q.Chen and L. Zhu 2023 Applied Ocean Research | Data-driven modeling of Bay-Ocean wave spectra at Bay-Ocean wave spectra [ Neural networks Providing accurate forecasts and hindcasts of wave conditions for the Bay Bridge-Tunnel
20 Shahabi, A. andShahabi, A. Old Dominion University N. Tahvildari 2024 _|Coastal Engineering A deep-learning model for rapid spatiotemporal Coastal water level LSTM; CNN Developing a deep neural network for spatiotemporal prediction of water levels in

21 Wells, B. K., S. [Wells, B. K. Old Dominion University S.R.Thorrold and C. M. |2000 _[Trans. Am. Fish. Soc Geographic Variation in Trace Element Composition of | Trace Element Neural networks; Linear discriminant __| Determining trace metal levels in juvenile weakfish from five estuarine locations

22 Bangley, C. W.,| Bangl SERC M. L. Edwards, C. 2021 |Ecosphere Environmental associations of cownose ray (Rhinoptera | Cownose ray Boosted regression trees (BRTs Better understanding the drivers and timing of cownose ray seasonal migration in order
23 |Byrd,K.B., L. B{Byrd, K. B. SERC L. Ballanti, N. Thomas, [2018 |ISPRS J. Photogramm. _|A remote sensing-based model of tidal marsh Tidal marsh Random forest Generating a single remote sensing model of tidal marsh aboveground biomass and
24 Scardi, M. and l| Scardi, M. Stazione Zoologica ‘A. L. W. Harding 1999 Ecol. Model. Developing an empirical model of phytoplankton Phytoplankton primary [Neural networks; regression Estimating phytoplankton primary production using regression and artificial neural

25 |Bailey, H., A. D.[Bailey, H. UMCES A.D. Fandel, K. Silva, E. |12021 _|Ecosphere Identifying and predicting occurrence and abundance of |Vocal animal species [GAM Analyzing acoustic recordings from 2016 to 2018 for signature whistles of bottlenose
26 Mulligan, T. ). a|Mulligan, T. J. UMCES R.W. Chapman 1989 |Copeia Mitochondrial DNA Analysis of Chesapeake Bay White | Mitochondrial DN Clustering Understanding white perch population and migration

27 Testa, ). M., V. UTesta, J. M. UMCES V. Lyubchich and Q. 2019 Estuaries Coasts Patterns and trends in secchidisk depth over three Coastal Secchi Clustering Understanding the factors driving long-term variability and trends in water clarity (i.e.,

28 Testa, ). M., W. [Testa, J. M. UMCES W. Liu, W. R. Boynton, |2024 Physical and Biological Controls on Short-Term Shallow water DO CART Using a combination of time-series analysis, harmonic analysis, and machine learning
29 Windle, A. E., L{Windle, A. E. UMCES L. W. Staver, A.J. 2023 _|Frontiers in Remote Multi-temporal high-resolution marsh vegetation Marsh vegetation Random forest Classifying species-specific marsh vegetation using UAS remote sensing and random
30 Zhang, Q., T. R.[Zhang, Q. UMCES /CBP T.R. Fisher, E. M. 2021 |Water Res. Nutrient limitation of phytoplankton in Chesapeake Bay: | Coastal nutrient CART Reproducing bioassay-based nutrient limitation patterns in the mainstem of the Bay and
31 Zhang, Q., T. R.[Zhang, Q. UMCES /CBP T.R. Fisher, C 2022 |Water Res. Nutrient limitation of phytoplankton in three tributaries [ Coastal nutrient CART Reproducing bioassay-based nutrient limitation patterns in three tidal tributaries and

32 Zhang, Q., ). T. {Zhang, Q. UMCES /CBP J.T.Bosticand R. D. 2022 |Water Res. Regional patterns and drivers of total nitrogen trends in | Riverine nitrogen Clustering; Random forest Understanding regional patterns and drivers of total nitrogen trends in the Chesapeake
33 Zhang, Q.,). T. {Zhang, Q. UMCES /CBP J.T. Bosticand R. D. 2023 _|Environ. Res. Lett. Effects of pointand nonpoint source controls on total _|Riverine phosphorus _ [Clustering; Random forest Understanding regional pattems and drivers of total phosphorus trends in the

34 Pluchino, A., A]Pluchino, A. University of Catania, A. Rapisardaand V. 2008 European Physical Communities recognition in the Chesapeake Bay Communities Dynamical clustering Applying the dynamical clustering to the identification of communities of marine

35 Langendorf, R. |Langendorf, R. |University of Colorado, V. Lyubchich, J. M. Testa[2021 ACS ES&T Water Inferring controls on dissolved oxygen criterion Coastal DO Clustering; Structural equation Understanding the long-term fluctuations of DO in the Bay in response to external

36 Austin, B., D. A{Austin, B. University of Maryland, D.A.Allen, A. L. Mills 1977 _[Can. ). Microbiol. Numerical taxonomy of heavy metal-tolerant bacteria Microbial taxonomy Clustering Classifying metal-tolerant bacteria from Chesapeake Bay samples

37 Austin, B., J. ). QAustin, B. University of Maryland, J. ). Calomiris, J. D. 1977 Appl. Environ. Microbiol. |Numerical taxonomy and ecology of petroleum- Microbial taxonomy Clusterin Classifying petroleum-degrading bacteria from Chesapeake Bay samples

38 DeSilet, L., B. G| DeSilet, L. University of Maryland, B. Golden, Q. Wangand [1992 |Computers & Operations _|Predicting salinity in the Chesapeake Bay using Coastal salinity Neural networks; regression Predicting salinity in different parts of the Bay using two approaches - neural network
39 Mallory, L. M., §Mallory, L. M. University of Maryland, B. Austin and R. R. 1977 _|Can. ). Microbiol. Numerical taxonomy and ecology of oligotrophic Microbial taxonomy Clusterin; Classifying slow-growing bacteria from Chesapeake Bay samples

40 West, P. A., G. (West, P. A. University of Maryland, G. C. Okpokwasili, P. R. |1984 |Appl. Environ. Microbiol. |[Numerical taxonomy of phenanthrene-degrading Microbial taxonomy Clustering Classifying phenanthrene-degrading bacteria from Chesapeake Bay samples

41 Islambekov, U.|Islambekov, U. |University of Texas at Dallas _|Y. R. Gel 2018 Environmetrics Unsupervised space-time clustering using persistent Water quality Clustering Presenting a new clustering algorithm for space-time data based on the concepts of

42 Huang, X., I. R.|Huang, X. University of Texas at Dallas/ [I. R. Iliev, V. Lyubchich |2017 |Environmetrics Ridinédown theBai: SEace-timeclusterinéofecoloéical Water quality Clustering Developing a new data-driven procedure for optimal selection of tuning parameters in
43 Kerns, B. W. an{Kerns, B. W. University of Washington S.S.Chen 2022 Nat. Hazards Compound effects of rain, storm surge, and river Coastal flooding K-Nearest Neighbor (KNN)? Better understanding and improving prediction of the compound effects of rain, storm
44 Jellen, C., J. Bu US Naval Academy J. Burkhardt, C. 2020 _ [Appl. Opt. Machine learning informed predictorimportance Maritime optical Random forest Deriving new insights into the physical relationships affecting optical turbulence in the
45 Kim, J.-W. USDA-ARS Y. A. Pachepsky 2010 |J). Hydrology Reconstructing missing daily precipitation data using Precipitation Neural networks Developing anew technique to reconstruct missing daily precipitation data in the central
46 Lee, )., A. Abba: . Ulsan National Institute of A.Abbas, G. W. 2023 |J. Hydrology Estimation of base and surface flow using deep neural _[Flow discharge LSTM Developing a deep leaming model which is capable of simulating both base and surface
47 Maloney, K. O.,[Maloney, K. 0. |USGS Z. M. Smith, C. 2018 Freshwater Science Predicting biological conditions for small headwater Stream biological Random forest Developing arandom forests model to predict biological condition of small streams

48 Maloney, K. O.,|Maloney, K. 0. |USGS D. M. Carlisle, C. 2021 Environ. Manage. Linking altered flow regimes to biological condition: An__[Stream biological Random forest Developing random forests to model biological conditions using a benthic

49 Maloney, K. O.,[Maloney, K. 0. |USGS C.Buchanan, R.D. 2022 _|). Environ. Manage. Explainable machine leaming improves interpretability in | Stream biological Random forest Developing separate random-forest models to predict flow status (inflated, diminished,
50 Maloney, K. O.,[Maloney, K. 0. |USGS K. P. Krause, M. J. 2022 Ecol. Indicators Using fish community and population indicators to Stream biological Random forest Using community and species-level analyses concurrently to provide amore holistic
51 Wherry, S. A., A\Wherry, S. A. USGS A. ). Tesoriero and S. 2021 Environ. Sci. Technol. Factors Affecting Nitrate Concentrations in Stream Base | Baseflow nitrate Boosted regression trees (BRTs Linking nitrate concentrations in base flow in the Bay watershed to explanatory variables
52 Loftis, J. D., S. HLoftis, J. D. VIMS S. Katragaddaand leee |2022 |OCEANS Hampton Roads |A Deep Learning Algorithmic Approach to Develop a Inundation Deep leamning (no access to full text) | Developing Video Inundation Monitoring Systems in tidal tributaries of Chesapeake Bay
53 Shen, J., Z. War|Shen, J. VIMS Z.Wang,).Du, Y. J. 2024 |Earth and Space Science |Machine Learning-Based Wave Model With High Spatial | Wave LSTM Developing a machine learning model using long short-term memory to simulate large-
54 Yu, X., J. Shen qYu, X. VIMS J.Shen and J. Du 2020 _|Water Resour. Res. A machine-learning-based model for water quality in Coastal DO Artificial Neural networks; Empirical Understanding temporal-spatial variations of DO and hypoxic condition in Chesapeake
55 Yu, X. and J. Sh{Yu, X. VIMS J.Shen 2021 |Ocean Model. Adata-driven approach to simulate the spatiotemporal | Coastal Chl-a Artificial Neural networks; Empirical Understanding spatiotemporal variability of Chl-a in the Chesapeake Bay using satellite
56 Yu, X., J. Shen, |Yu, X. VIMS J. Shen, G.Zhengand ). |2022 |Ocean Model. Chlorophyll-ain Chesapeake Bay based on VIIRS Coastal Chl-a Artificial Neural networks; Empirical Understanding spatiotemporal variability of Chl-a in the Chesapeake Bay using satellite
57 Lee, J-W., ). L. l|Lee, J.-W. Virginia Tech J. L. Irish, M. T. Bensi 2021 |Coastal Engineering Rapid prediction of peak storm surge from tropical Storm surge Neural networks; PCA; K-means A new one-dimensional convolutional neural network model combined with principal
58 Merriam, E. R., |Merriam, E. R. _|West Virginia University J.T. Petty and J. 2019 Ecosphere Conservation planning at the intersection of landscape [Brook trout Boosted regression trees (BRTs Using boosted regression tree to predict brook trout occurrence at the stream reach scale
59 Zhang, Z., ). Hu{Zhang, Z. Xiamen University, China/ J. Huang, S. Duan, Y. 2022 Ecol. Indicators Use of interpretable machine learning to identify the Riverine water gualit Random forest; Shapley Additive Understanding how riverine nutrient export responds to the land use gradient in the a
*The following were added based on participant feedback after11/2024 .

60 Zheng, G., S. S¢Zheng, G. NOAA /University of S.SchollaertUz, P. St- |2024  |Ariificial Intelligence for _|Hypoxia Forecasting for Chesapeake Bay Using Artificial |Coastal DO Deep neural network Predicting oxygen concentrations in the Chesapeake Bay using deep neural networks
61 Gordon, S., D. {Gordon, S. USGS D. K. Jones, V.S. Blazer, |2021 Environ. Monit. Assess. _[Modeling estrogenic activity in streams throughoutthe |Endocrine-disruptin Random forest Using random forest regression models to predict estrogenic activity at unsampled

62 Cashman, M. J|Cashman, M. J. [USGS G.Lee, L. E. Staub, M. P.|2024 _ |). Environ. Manage. Physical habitat is more than a sedimentissue: A multi- |Physical habitat metrics |Random forest Using rapid habitat monitoring data to train a machine-leaming (i.e., random forest)

63 Fanelli, R. M., J.|Fanelli, R. M. USGS J. Moore, C. C. Stillwell, {2024 ACS ES&T Water Predictive Modeling Reveals Elevated Conductivity Riverine conductivity Random forest Predicting conductivity in streams across the Chesapeake Bay watershed usingrandom
64 Woods, T., M. Woods, T. USGS M. C. Freeman, K. P. 2023 |Glob. Chang. Biol. Observed and projected functional reorganization of Fish biodiversity Random forest; clustering Assessing ongoing and future fish biodiversity responses to climate and LULC in the

65 Emmons, S., TIEmmons, S. USGS T.Woods, M. Cashman, [2024 J. Environ. Manage Causal inference approaches reveal both positive and Stream biological Propensity score matching (PSM); Using two causal inference approaches to identify potential management practice (MP]
66 Wang, N., Q. Cl{Wang, N. Northeastern University Q. Chen, H.Wang, W. |2023 |Applied Ocean Research |Field observations and long short-term memory Wave energy LSTM Focusing on the prediction of wave energy spectra in shallow water using winds and tides
67 Lee, )., D.Kim, {Lee, J. University of Maryland, D.Kim, S. Hong, D. Yun, [2024 Sci. Total Environ. Comparative efficiency of the SWAT model and a deep Riverine nitrogen LSTM; Convolutional neural network _|Performance of SWAT and deep learning model was evaluated in cases when deep

68  |King, R.S.,A. H| Kiné, R.S. SERC A.H. Hines, F. D. Craige |2005 |J. Exp. Mar. Biol. Ecol. Regional, watershed and local correlates of blue crab Bluecrab and bivalve | CART Testing hypothesized relationships of blue crabs and bivalves with salinity (a regional
69 Fisher, G. B., A.|Fisher, G. B. UCSB A.J.Elmore, M. C. Fitzpal2024 | GIScience & Remote Sensi| Mapping recent timber harvest activity in a temperate foreg Timber harvest XGBoost Providing a framework and validation for combining approachable machine-learning

70 Mainali, K., M. dMainali, K. Chesapeake Conservancy M. Evans, D. Saavedra, |2023 [Sci. Total Environ. Convolutional neural network for high-resolution wetland\Wetland mapping CNN Developing a deep leaming model to automatically map wetlands at landscape scale in
71 Kulkami, C., B.|Kulkarni, C. University of Maryland B.A.Tama, N. -J. 2025 |IEEE Journal of Selected |Anomaly Detection Using Graph Deviation Networks With| Anomaly detection Graph Deviation Networks Providing a framework to analyze disparate datasets by forming spatial neighborhoods to
72 Devnath, M. K. | Devnath, M. K. [University of Maryland K.S.Chakraborty, and [2024 _|Proceedings of the32nd |CMAD: Advancing Understanding of Geospatial Clusters {Anomaly detection CMAD Presenting a novel method named Convolution MatrixAnomaly Detection (CMAD),

73 McGuire, M. P.,[McGuire, M University of Maryland V. P.Janeja, and A. 2010 Knowledge Discovery Spatiotemporal Neighborhood Discovery for Sensor Datal Spatiotemporal Graph-based neighborhood Focusing on the discovery of spatiotemporal neighborhoods in sensor datasets where a
74 Zhang, Q., R. R{Zhang, Q. UMCES /CBP R. R. Murphy, R. Tian, 2025 Environ. Sci. Technol. Random forest Combining long-term monitoring data, science-based assessment methods, and novel
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