

Bruce Vogt

Ecosystem Science Manager

NOAA Chesapeake Bay Office

May 8, 2024

Projecting the Future for Living Resources Under Changing Climate Conditions



## Outline

- 1. National Climate Assessment
- 2. The Future is now
- 3. Climate change stressors
- 4. Impacts on living resources
- Improved science and management for adaptation and resilience



## National Climate Assessment

The ocean and coastal habitats in the Northeast are experiencing changes that are unprecedented in recorded history, including ocean warming, marine heatwaves, sea level rise, and ocean acidification *(high confidence)*. Changing ocean conditions are causing significant shifts in the distribution, productivity, and seasonal timing of lifecycle events of living marine resources in the Northeast *(high confidence)*. These impacts have spurred adaptation efforts such as coastal wetland restoration and changes in fishing behavior *(high confidence)*.





## The future is now



SIMONA CLAUSNITZER IN THE EYE OF THE STORM (2020, LINOCUT PRINT)



RITIKA S. YOUTH ENTRY, GRADE 8 REDRAWING THE EARTH





## Chesapeake Bay – Air Temperature Trends



Present (2021):

Increases ranging from 0.6 to more than 2.8 degrees per century

www.chesapeakeprogress.com/climate-change/climatemonitoring-and-assessment





### Challenge: Rising Water Temperatures

### Warmer Watershed

Warmer Bay











### A range of possibilities!



# **Chesapeake Bay – Precipitation Trends**

Present (2021):

Percent changes in total annual precipitation from the 100 year baseline range from a -0.203% decrease in southern West Virginia to a 17.62% increase in central New York

ronto Legend Concord Rochester Buffalo Albany Boston Climate Division Boundary Hartford Providence **Change in Average Precipitation** (percent) New York < 0% 0.01 - 4% Harrisbur 4.01 - 8% hiladelphia 8.01 - 12% 12.01 - 18% Washingto Louisville Frank fort Charleston Baseline 1901-2000 +Q Type address or zipcode ville Greensboro Knoxville Leaflet | Powered by Esri | HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, EPA

www.chesapeakeprogress.com/climatechange/climate-monitoring-and-assessment



Change in Total Annual Precipitation in the Chesapeake Bay Watershed (1901-2021) <sup>[2]</sup>

### Sea Level



Current Trend (1960-2017) Sea levels have risen around 0.5-1 ft



### Ecological Impacts to Fish from Rising Water Temperatures: Species-specific impacts



• **Positive impacts** are likely for blue crab as warmer temperatures support higher productivity and increased habitat range as species move northward.



- **Uncertain impacts** are predicted for oysters due to their already depressed populations as a result of disease, overfishing, and habitat loss.
- Striped bass may experience both negative and positive impacts at different stages of life (larval to adult) and habitat use (rivers and estuaries to marine).





### Changes in habitat usage for several species



Shonfeld et al, 2022. Fisheries Oceanography





### Cobia and Blue catfish







### Red drum and Summer flounder







### White shrimp







## Impacts on Water Habitat & SAV







### Impacts on Marshes



(© M. Kirwan/VIMS).





## The future depends on our choices



### Tidal

Submerged Aquatic egetation (SAV)











## Science supports decision making

- Understand what is changing and mechanisms of change
- Employ new monitoring approaches
- Assess vulnerabilities and risk
- Track change and provide early warning
- Project future conditions (ecological forecasts)
- Establish climate informed reference points and/or thresholds
- Adaptive management responds to new information







## Alternative Management Frameworks

Ecosystem based management





## **Ecosystem Status Reports and Risk Assessments**

#### EAFM Risk Assessment: 2020 update

#### Species level risk elements

| Species           | Assess  | Fstatus | Bstatus | FW1Pred | FW1Prey | FW2Prey | Climate | DistShift | EstHabitat |
|-------------------|---------|---------|---------|---------|---------|---------|---------|-----------|------------|
| Ocean Quahog      | lowest  | lowest  | lowest  | lowest  | lowest  | lowest  | highest | modhigh   | lowest     |
| Surfclam          | lowest  | lowest  | lowest  | lowest  | lowest  | lowest  | modhigh | modhigh   | lowest     |
| Summer flounder   | lowest  | lowest  | lowmod  | lowest  | lowest  | lowest  | lowmod  | modhigh   | highest    |
| Scup              | lowest  | lowest  | lowest  | lowest  | lowest  | lowest  | lowmod  | modhigh   | highest    |
| Black sea bass    | lowest  | lowest  | lowest  | lowest  | lowest  | lowest  | modhigh | modhigh   | highest    |
| Atl. mackerel     | lowest  | highest | highest | lowest  | lowest  | lowest  | lowmod  | modhigh   | lowest     |
| Butterfish        | lowest  | highest   | lowest     |
| Longfin squid     | lowmod  | lowmod  | lowmod  | lowest  | lowest  | lowmod  | lowest  | modhigh   | lowest     |
| Shortfin squid    | lowmod  | lowmod  | lowmod  | lowest  | lowest  | lowmod  | lowest  | highest   | lowest     |
| Golden tilefish   | lowest  | lowest  | lowmod  | lowest  | lowest  | lowest  | modhigh | lowest    | lowest     |
| Blueline tilefish | highest | highest | modhigh | lowest  | lowest  | lowest  | modhigh | lowest    | lowest     |
| Bluefish          | lowest  | lowest  | highest | lowest  | lowest  | lowest  | lowest  | modhigh   | highest    |
| Spiny dogfish     | lowmod  | lowest  | lowmod  | lowest  | lowest  | lowest  | lowest  | highest   | lowest     |
| Monkfish          | highest | lowmod  | lowmod  | lowest  | lowest  | lowest  | lowest  | modhigh   | lowest     |
| Unmanaged forage  | na      | na      | na      | lowest  | lowmod  | lowmod  | na      | na        | na         |
| Deepsea corals    | na      | na      | na      | lowest  | lowest  | lowest  | na      | na        | na         |

#### Ecosystem level risk elements

| System       | EcoProd | CommRev | RecVal  | FishRes1 | FishRes4 | FleetDiv | Social | ComFood | RecFood |
|--------------|---------|---------|---------|----------|----------|----------|--------|---------|---------|
| Mid-Atlantic | lowmod  | modhigh | highest | lowest   | modhigh  | lowest   | lowmod | highest | modhigh |





# **Building Resilience**

A capability to anticipate, prepare for, respond to, and recover from significant multi-hazard threats with minimum damage to social well-being, the economy, and the environment







Kister 2016 (Reprinted with permission from the Integration & Application Network, 2013)

## Questions?





RITIKA S. YOUTH ENTRY, GRADE 8 REDRAWING THE EARTH





# Backup



### Identified Science Needs: Ecosystem-Based Management—Monitoring



- Improve environmental monitoring of surface and bottom temperature, dissolved oxygen, and fish habitat condition.
  - Consider establishing monitoring stations where there are significant fisheries habitat and spawning grounds.
- Evaluate needs for zooplankton monitoring at fish spawning and nursery areas to assess food web shifts.
- Explore the need for *in situ* monitoring of lower trophic organisms to better assess physiological response to changing conditions.



### Identified Science Needs: Ecosystem-Based Management—Analyses and Modeling

- Synthesize existing science to establish habitat condition thresholds based on temperature and dissolved oxygen for key fisheries species (e.g., striped bass, summer flounder).
- Develop habitat suitability models and indicators for key fisheries resources.
- Build into ecosystem models, improved information on drivers of natural mortality, recruitment success, and climate change impacts for key fishery species.
- Support assessments for emerging fisheries as climate change creates favorable conditions for these fisheries to be economically viable.
- Research how loss of late-winter/spring eelgrass habitat will affect blue crab populations.





Example from <u>Striped Bass Habitat</u> <u>Suitability Study</u> (Dixon et al. 2022)



### Identified Science Needs: Extreme Climate Change Stressors—Marine Heat Waves



- Relate current definitions of marine heat waves with living resource thresholds to determine an appropriate definition for Chesapeake Bay.
- Explore real time monitoring of marine heat waves and forecast products.
- Consider a marine heat wave indicator that connects with living resource management and guidance to the public.



### Identified Science Needs: Nearshore Habitat—Strategic Restoration

- Support threshold analyses to determine when ecological impacts or benefits occur from natural infrastructure implementation.
- Develop criteria for targeting nearshore restoration where multiple benefits and ecosystem services can be optimized.
- Increase understanding of watershed practices that can reduce local warming effects.
- Use models to increase understanding of habitat change from sea level rise to inform restoration strategies.





Kister 2016 (Reprinted with permission from the Integration & Application Network, 2013)



### We are headed for dangerous temp. ranges by 2100



# Climate impacts are not experienced equally



Source: New York Times, "How Decades of Racist Housing Policy Left Neighborhoods Sweltering," August 24, 2020.



### **Extreme Heat Events**

Cooler: Neighborhoods next to parks and those with plenty of tree cover saw significantly cooler temperatures on a hot summer afternoon: as low as 87°F.





Warmer



Hotter: On the same day, residential neighborhoods east of downtown saw hotspots reach over 101°F.

BALTIMORE AFTERNOON RANGE: 87°F TO 103°F





### ADAPTATION

### MITIGATION

**NOAA** FISHERIES



## Mitigation - Climate Solutions Now Act (2022) - MD

- Reduce Greenhouse Gas Emissions by 60% by 2031 and Net Zero by 2045 (or 2035) (most ambitious goal in the states)
- New Building Codes focused on electrification and accounting for existing buildings
- Schools net zero (including busses)
- Environmental Justice
- Chesapeake Conservation Corps Mitigate CC
  and assist underserved communities
- Nuclear and Biofuels
- Funding

### **NCBO Work:**

 Environmental Literacy - Informed decisions, systems thinking, solutions in schools, support for a workforce that will implement solutions



# Resilience

### **NCBO Work:**

- Creating a publicly available marine heatwave alert system to inform fishing behavior and management during extreme conditions-minimize stress to vulnerable species.
- Implementing shoreline protection strategies with nature-based solutions to minimize wave energy and expand lifespan of habitats under changing climate conditions.
- Environmental Literacy Programming Resilience Hubs, climate and resilience workshops







# Food for Thought:

- How can we design our work to allow for success under future climate projections?
- Can we operate/design/fund to net zero or even net negative (or as close to this as possible)?



Paired Approach to Using Oysters for Shoreline Protection and Habitat Restoration

