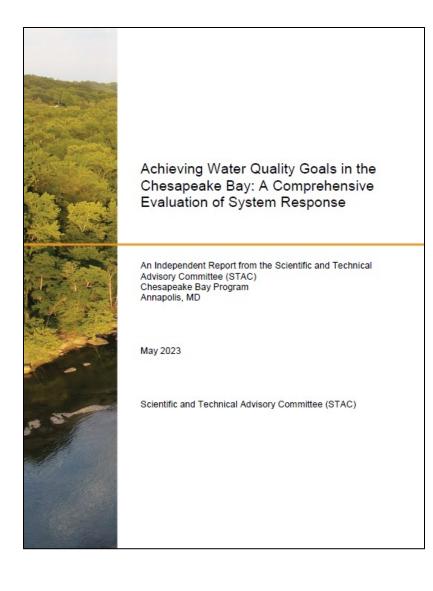
CESR, Living Resources, and Climate Change

CBP Climate Change Modeling III: Post-2025 decisions

Kenneth Rose

France-Merrick Professor in Sustainable Ecosystem Restoration Horn Point Lab, UMCES


CESR

• Executive Summary, Policy Brief

• Main report

- Three supplemental reports
 - Watershed
 - Estuary
 - Living Resources

- Easton, Z., Stephenson, K., Benham, B., Böhlke, J. K., Brosch, C., Buda, A., Collick, A., Fowler, L., Gilinsky, E., Hershner, C., Miller, A., Noe, G., Palm-Forster, L., & Thompson, T. (2023). *Evaluation of watershed system response to nutrient and sediment policy and management.*
- Testa, J. M., Dennison, W. C., Ball, W. P., Boomer, K., Gibson, D. M., Linker, L., Runge, M. C., & Sanford, L. (2023). *Knowledge gaps, uncertainties, and opportunities regarding the response of the Chesapeake Bay estuary to proposed TMDLs.*
- Rose, K., Monaco, M. E., Ihde, T., Hubbart, J., Smith, E., Stauffer, J., & Havens, K. J. (2023). *Proposed framework for analyzing water quality and habitat effects on the living resources of Chesapeake Bay.*

Scientific and Technical Advisory Committee: A Proposed Framework for Analyzing Water Quality and Habitat Effects on the Living Resources of Chesapeake Bay

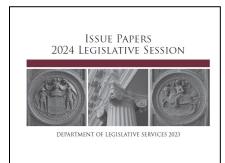
Kenneth Rose¹, Mark E. Monaco², Tom Ihde³, Jason Hubbart⁴, Eric Smith⁵, Jay Stauffer⁶, Kirk Havens⁷

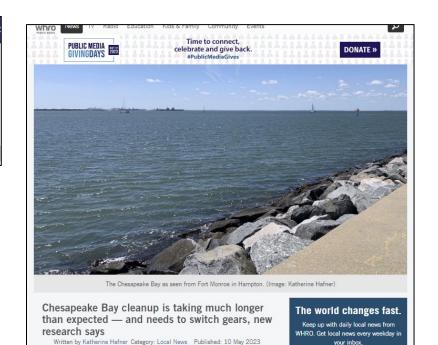
¹University of Maryland Center for Environmental Science, ²National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, ³Morgan State University, Patuxent Environmental and Aquatic Research Laboratory, ⁴West Virginia University, ⁵Virginia Tech, ⁶Penn State University, ⁷Virginia Institute of Marine Science

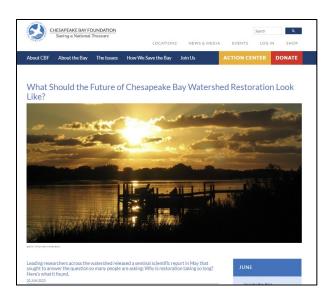
May 2023

STAC Publication 23-005

CESR

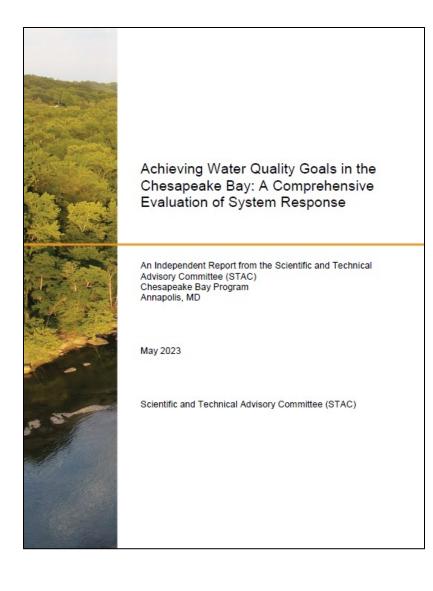

- **FINDING:** It might not be possible to meet the all TMDL and WQ goals **but** this may not be necessary to meet and support living resource goals.
- CWA diverts attention from consideration of LR responses
- Opportunities exist to adjust water quality goals to prioritize management actions that improve LR
- Water quality improvements in shallow water may have more of a benefit to living resources than elsewhere.
- Water quality alone does not guarantee improvements in Living Resources. There are other factors!


BAY JOURNAL


About Cont

Accepting leadership gavel, Maryland governor vows new approach toward Bay

Seremy Cox Oct 23, 2023 🔍 1


ENERGY + ENVIRONMENT

Report details why progress to clean up the Chesapeake Bay has been slow

Bay Program points to ineffective agricultural reductions, need to consider climate change

BY: CHARLIE PAULLIN - MAY 10, 2023 12:02 AM

Scientific and Technical Advisory Committee: A Proposed Framework for Analyzing Water Quality and Habitat Effects on the Living Resources of Chesapeake Bay

Kenneth Rose¹, Mark E. Monaco², Tom Ihde³, Jason Hubbart⁴, Eric Smith⁵, Jay Stauffer⁶, Kirk Havens⁷

¹University of Maryland Center for Environmental Science, ²National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, ³Morgan State University, Patuxent Environmental and Aquatic Research Laboratory, ⁴West Virginia University, ⁵Virginia Tech, ⁶Penn State University, ⁷Virginia Institute of Marine Science

May 2023

STAC Publication 23-005

1 Introduction

2 Why now?

- 3 Management Questions that Could Be Answered
- 4 Existing Links Between WQ/Habitat & LR
 4.1 Assessing Progress of Restoring LR of the CB
 4.2 Example of Analyses for CB Living Resources
 4.2.1 Habitat-based Assessment
 4.2.2 Statistical Analysis of LR Monitoring Data
 4.2.3 Living Resource Models

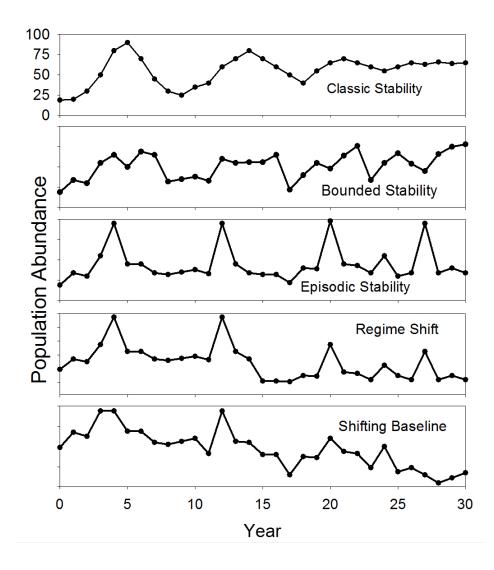
5 LR and Other Large-scale Restoration Efforts

6 Going Forward

7 Proposed Framework

- 7.1 Complex Life cycles and life history strategies
- 7.2 Variability, uncertainty, and stochasticity
- 7.3 Model complexity
- 7.4 Vital rates
- 7.5 Habitat suitability and capacity
- 7.6 Biological organization
- 7.7 Nonequilibrium theory and baseline
- 7.8 Multiple Influencing Factors
- 7.9 Tradeoffs (win-lose), Win-win, and Lose-lose
- 7.10 Power to detect responses
- 7.11 Explicit and implicit representations
- 7.12 Relative versus absolute predictions

8 Strategic determination of an analysis plan


- 8.1 Selecting species
- 8.2 Available Data
- 8.3 Response and explanatory variables
- 8.4 Biological, temporal, & spatial scales
- 8.5 Analytical approaches
- 8.6 Coordination and combining results

9 Final comments

10 Acknowledgements

11 References

Foundational Concepts – Nonequilibrium Theory

Context

- Many reasons to relate water quality and habitat changes to living resources
- $\,\circ\,$ Valued by stakeholders and society
- Restoration is costly
- $\,\circ\,$ Realistic and feasible targets and goals
- Ecological and economic efficiency ("reckoning")
- Expectations
- Adaptive management
- Winner and losers

Management Questions

- What is the expected (projected) response of living resources to water quality and habitat conditions in the Bay:
 - (a) without the TMDL and habitat targets
 - (b) present TMDL and habitat attainment continued

(c) under full TMDL and habitat goals

Management Questions

 Given the current state or condition, how can the analyses inform what types and magnitude of changes in water quality and habitat are needed to evoke an agreed-upon target set of the desired living resources' responses?

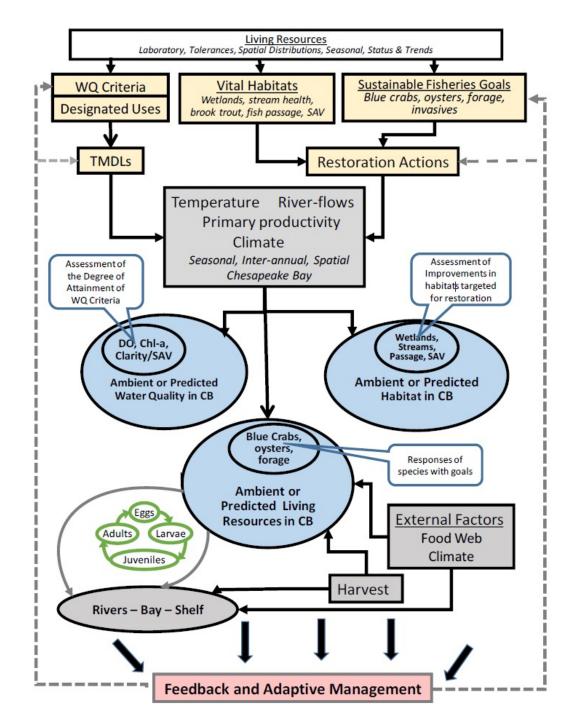
 What are the certainties and critical uncertainties of the analyses and how can they help guide future monitoring and modeling efforts?

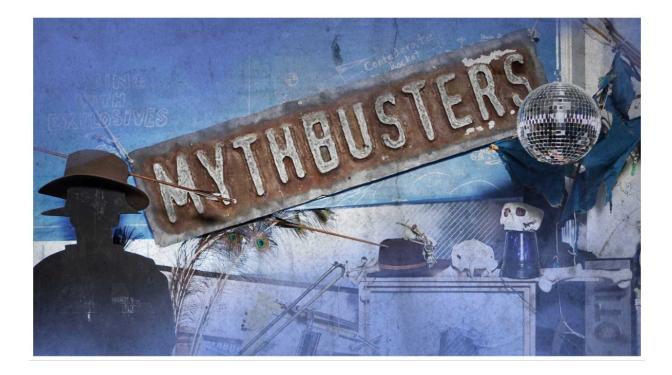
Feasibility – Chesapeake Bay

- Historical focus on water quality
- Productivity and highly valued
- Information and data rich
- Many scientists = a lot of past and ongoing activities
- Done at other large-scale restoration efforts
- Q: How would we go about doing this task?

Different Situation to "WQ"

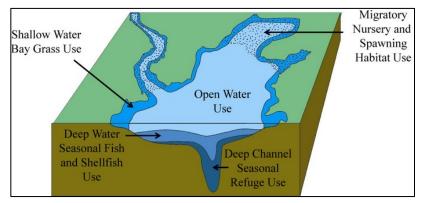
- Many critters move
- Affected by many factors in a complex life cycle
- Responses are on longer time scales
- Ability to isolate responses to actions decreases

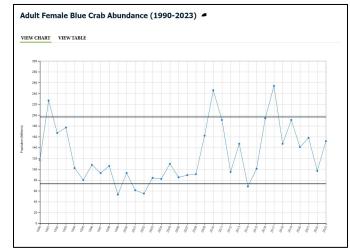

Different Situation to "WQ"


• Questions change

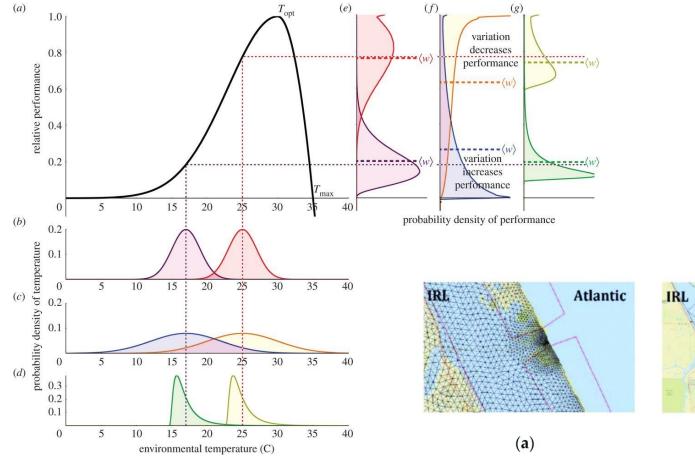
• Not specific targets for many living resources

• Not an established set of data or models


• Greater uncertainties



(1) TMDL ignores fish! False


- Bottom up approach very well done
- WQS
- Agreement indicators
- Report cards
- Others

Tango, P.J. and R.A. Batiuk. 2013. Journal of the American Water Resources Association 49: 1007-1024 https://www.chesapeakeprogress.com/abundant-life/blue-crab-abundance

(2) WQ Predictions for TMDL are the same as for living resources! False

(b)

Vasseur et al. 2014. Increased temperature variation poses a greater risk to species than climate warming. *Proc. Royal Society B, 281*, p.20132612.

Lodge and Weaver (2022) Journal of Marine Science and Engineering 10(8):1117

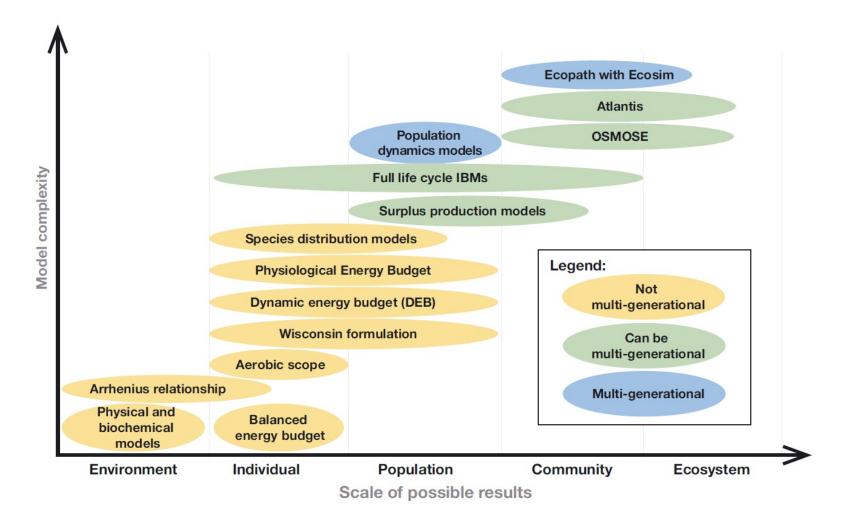
(3) We cannot do this! False

		Available online at www.sciencedirect.com
ELSEVIER	Ecological Modelling 300 (2015) 12–29 Contents lists available at ScienceDirect Ecological Modelling journal homepage: www.elsevier.com/locate/ecolmodel	al Modelling & Software 21 (2006) 602-614
ecosystem rest Kenneth A. Rose ^{a,*} William Graf ^f , Den	Taylor & Franc	CrossMark 7 Coastal Master Plan ategy for Selecting Fish Modeling Approaches
	Marine and Coastal Fisheries Dynamics, Management, and Ecosystem Science ISSN: (Print) 1942-5120 (Online) Journal homepage: http://www.tandfonline.com/loi/umcf20 Recommendations on the Use of Ecosystem	Frontiers In Marine Science Set 19398/96200
App	Modeling for Informing Ecosystem-Based Fisheries Management and Restoration Outcomes in the Gulf of Mexico Arnaud Grüss, Kenneth A. Rose, James Simons, Cameron H. Ainsworth, Elizabeth A. Babcock, David D. Chagaris, Kim De Mutsert, John Froeschke, Peter Himchak, Isaac C. Kaplan, Halie O'Farrell & Manuel J. Zetina Rejon	Modeling Quantitative Value of Habitats for Marine and Estuarine Populations Prep Romunald N. Lipcius ", David B. Eggleston", F. Joef Fodrie", Jaap van der Meer", Kenneth A. Rose", Rita P. Vasconcelos ¹⁵ and Karen E. van de Wolfshaar"
	D. Holzworth ¹ , J. Mysiak ^k , J. Reichl ¹ , R. Seppelt ^m , T. Wagener ⁿ , and P. Whitfield ^o	Dynamic Solutions of the gulf

 Vol. 732: 193–221, 2024
 MARINE

 https://doi.org/10.3354/meps14535
 MARINE

MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser


Published March 20

REVIEW

Advancing bioenergetics-based modeling to improve climate change projections of marine ecosystems

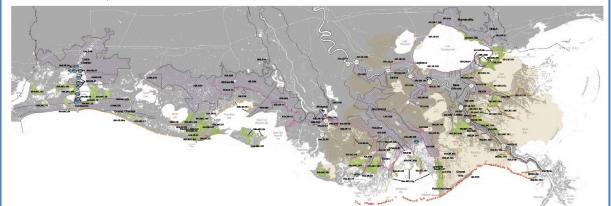
Kenneth A. Rose^{1,*}, Kirstin Holsman², Janet A. Nye³, Emily H. Markowitz², Thomás N. S. Banha⁴, Nina Bednaršek^{5,26}, Juan Bueno-Pardo⁶, David Deslauriers⁷, Elizabeth A. Fulton⁸, Klaus B. Huebert⁹, Martin Huret¹⁰, Shin-ichi Ito¹¹, Stefan Koenigstein^{12,13}, Lingbo Li¹⁴, Hassan Moustahfid¹⁵, Barbara A. Muhling^{12,13}, Philipp Neubauer¹⁶, José Ricardo Paula^{17,18,19}, Elizabeth C. Siddon²⁰, Morten D. Skogen²¹, Paul D. Spencer², P. Daniel van Denderen²², Gro I. van der Meeren²³, Myron A. Peck^{24,25}

Existing links WQ/Habitat to LR

- Many completed analyses
 - Excellent
 - Independent
- Species, methods, spatial/temporal coverage vary
- Addressed study-specific questions

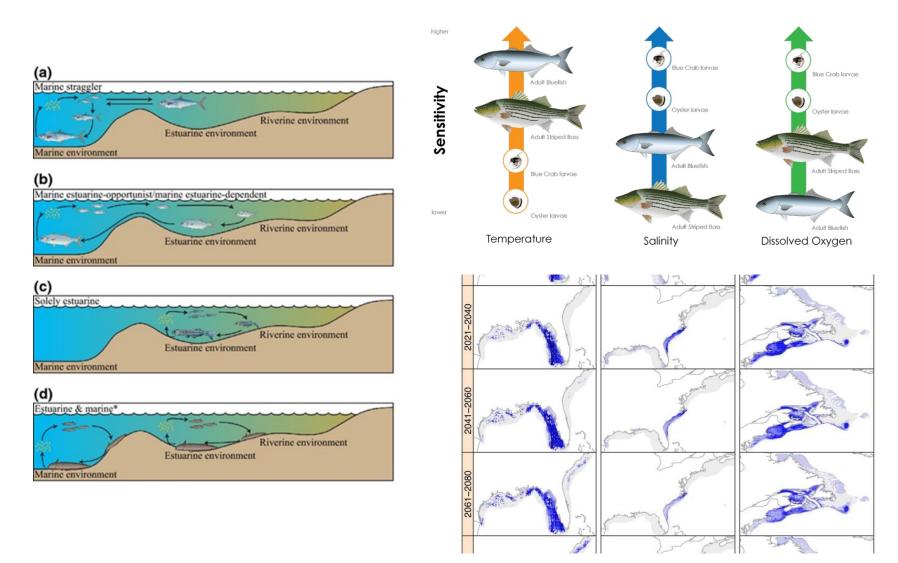
 Not "TMDL" and CBP habitat restoration

(4) Chesapeake Bay is unique! False

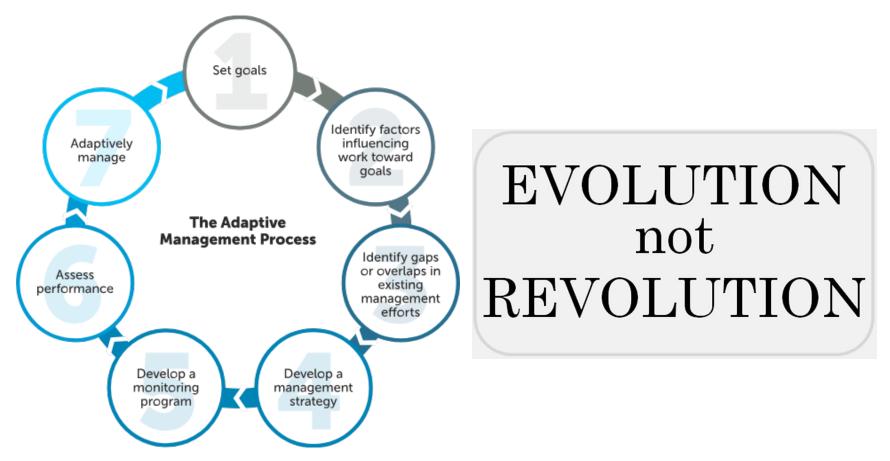


The National Academies of SCIENCES • ENGINEERING • MEDICINE REPORT

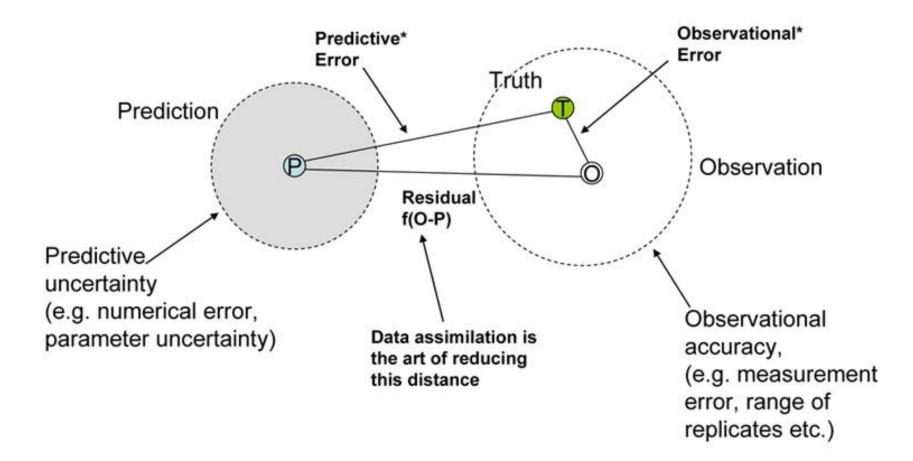
Effective Monitoring to Evaluate Ecological Restoration in the Gulf of Mexico



A \$50 BILLION INVESTMENT DESIGNED TO BUILD AND MAINTAIN LAND, REDUCE FLOOD RISK TO COMMUNITIES, AND PROVIDE HABITATS TO SUPPORT ECOSYSTEMS



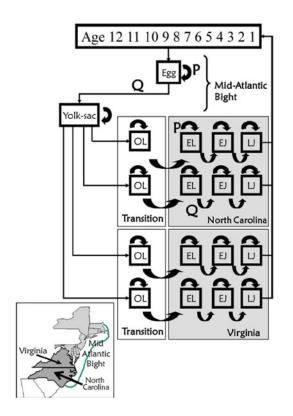
(5) A universal fish response! False

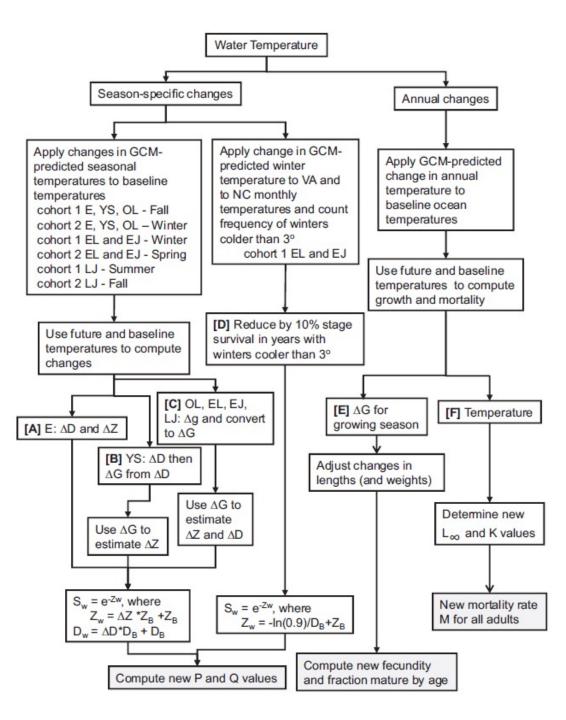

https://phys.org/news/2018-05-climate-shift-fish-species-north.html

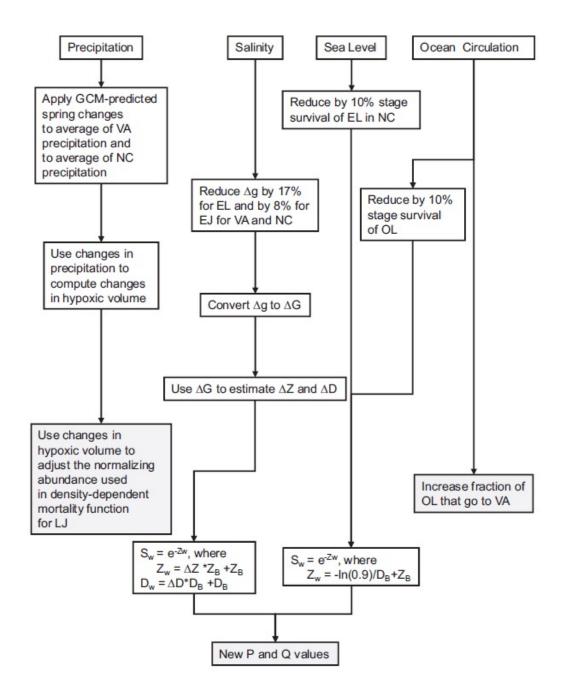
(6) CESR said to abandon the deep trench, TMDL, etc.! False

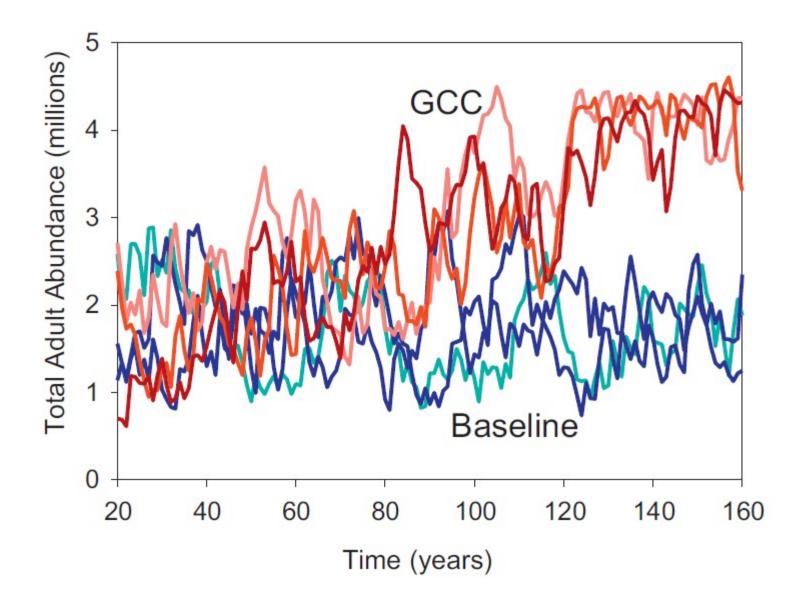
https://www.chesapeakebay.net/what/what-guides-us/decisions

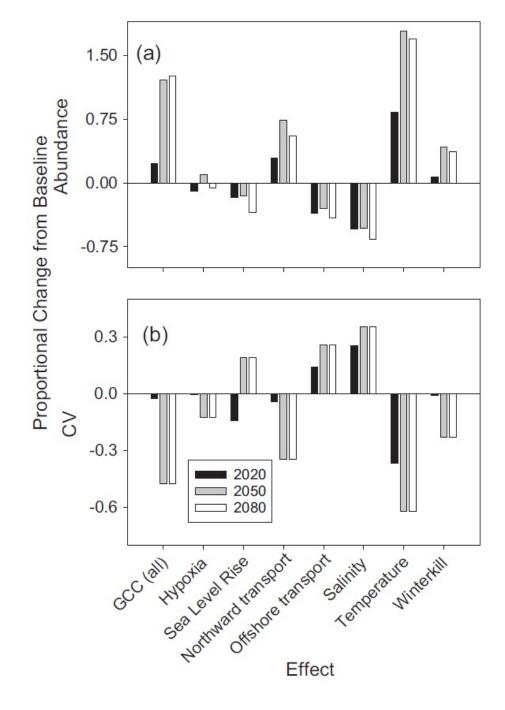
(7) Data are truth! False


Ecological Modelling 264 (2013) 98-114

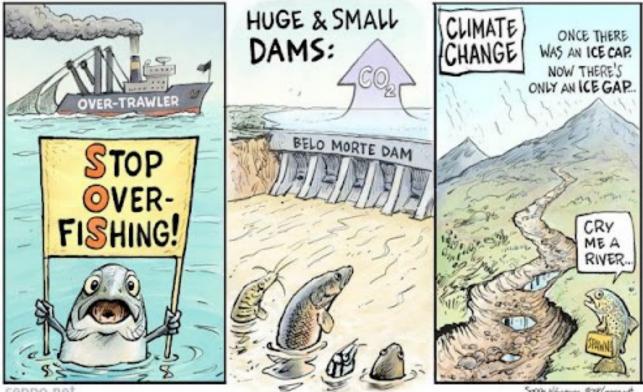

Simulating the effects of global climate change on Atlantic croaker population dynamics in the mid-Atlantic Region




Sandra L. Diamond^{a,*,1}, Cheryl A. Murphy^b, Kenneth A. Rose^c

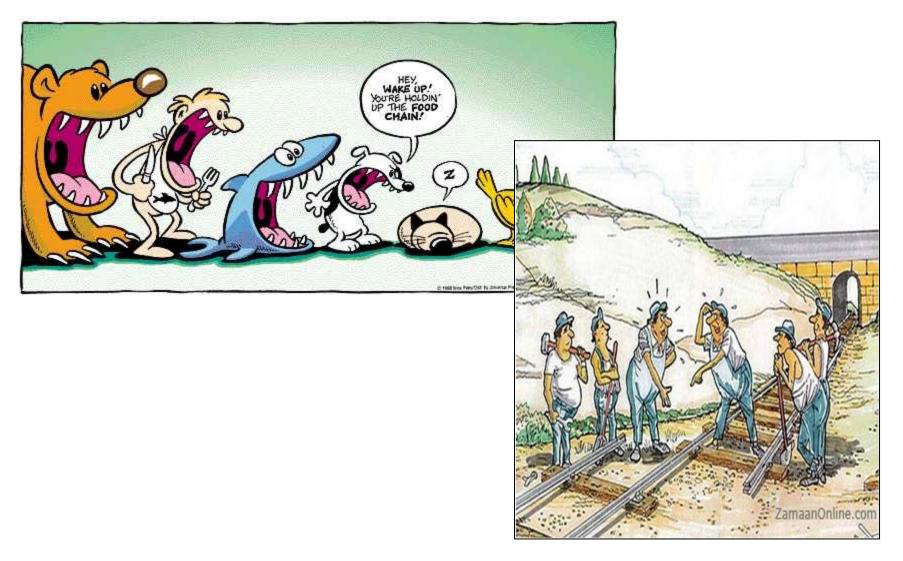


Stage	Baseline		2020		2050		2080	
	Р	Q	Р	Q	Р	Q	Р	Q
Virgini	a–Cohort	1						
Eggs	0.191	0.507	0.144	0.513	0.099	0.503	0.041	0.486
YS	0.748	0.116	0.733	0.123	0.715	0.131	0.689	0.143
OL	0.093	0.008	0.075	0.007	0.060	0.007	0.044	0.007
EL	0.204	0.142	0.246	0.121	0.217	0.125	0.183	0.131
EJ	0.581	0.049	0.582	0.046	0.579	0.054	0.575	0.066
Virgini	a-Cohort	2						
Eggs	0.390	0.308	0.370	0.284	0.340	0.266	0.303	0.242
YS	0.871	0.059	0.862	0.063	0.853	0.067	0.842	0.072
OL	0.191	0.007	0.163	0.006	0.144	0.007	0.122	0.007
EL	0.385	0.110	0.411	0.095	0.378	0.100	0.330	0.108
EJ	0.565	0.065	0.565	0.065	0.559	0.078	0.548	0.100
North (Carolina-	Cohort 1						
Eggs	0.0	0.728	0.0	0.705	0.0	0.685	0.0	0.658
YS	0.633	0.169	0.611	0.179	0.590	0.189	0.560	0.203
OL	0.125	0.008	0.102	0.007	0.081	0.007	0.070	0.007
EL	0.321	0.122	0.370	0.102	0.352	0.104	0.326	0.108
EJ	0.588	0.042	0.589	0.037	0.588	0.041	0.586	0.048
North (Carolina-	Cohort 2						
Eggs	0.236	0.462	0.192	0.475	0.169	0.469	0.137	0.459
YS	0.768	0.107	0.757	0.112	0.748	0.116	0.734	0.122
OL	0.141	0.007	0.122	0.007	0.111	0.007	0.097	0.007
EL	0.465	0.097	0.506	0.080	0.491	0.083	0.466	0.087
EJ	0.594	0.036	0.595	0.031	0.594	0.036	0.593	0.043

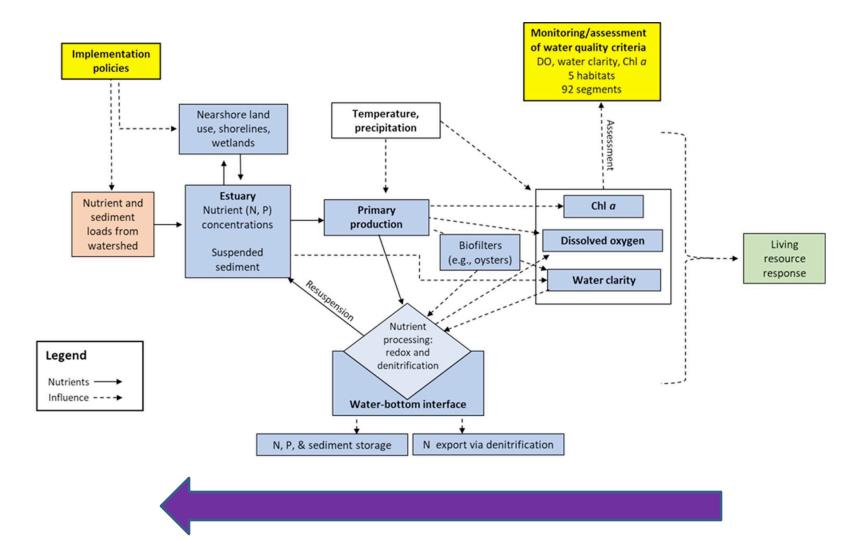


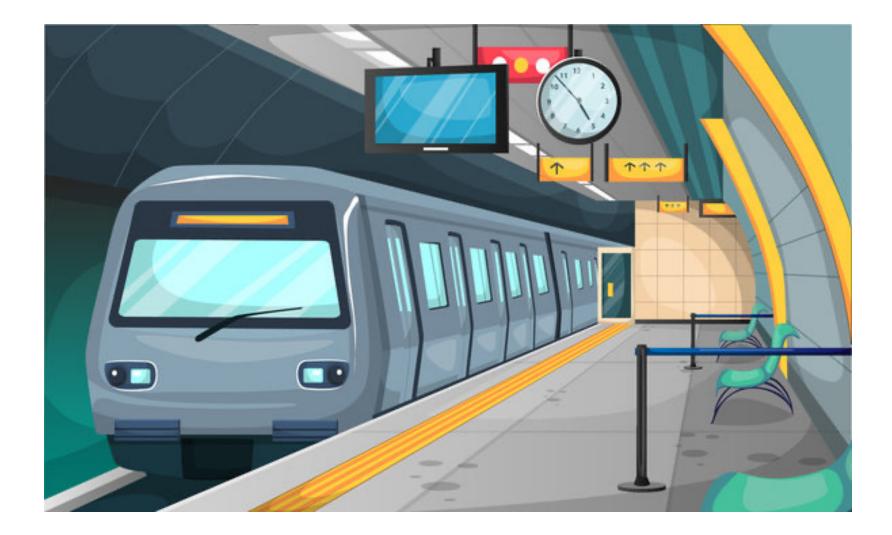
GLOBAL THREATS FOR MIGRATING FISH

seppo.net


Septe Himmun 2021/ sepend

This Workshop: Reverse the Situation




https://drawception.com/game/CLL92bSp5m/batman-and-joker-swap-roles/

Challenge: Thought Experiment

http://be-sciencetaskcards.weebly.com/digital-task-card-3.html

https://stock.adobe.com/search?k=train+station+cartoon

- (a) A typical thermal performance curve (TPC) for relative performance (fitness or a proximate
- (b) biological rate; black line) as a function of environmental temperature (equation (2.1)). T_{opt} marks
- (c) the temperature at which performance is greatest and T_{max} marks the critical transition to negative
- (d) values at high temperatures. Owing to the nonlinearity of this curve, species that experience temporal
- (e) variation in temperature will have a mean long-term performance $\langle w \rangle$ that differs from the value
- (f) predicted by the mean of their environment (owing to Jensen's inequality). The distribution of instantaneous
- (g) performance and long-term performance means are shown for nominal 'cold' and 'warm' temperature
- (h) distributions (b,e), distributions with increased variance (c,f) and distributions with positive skewness (d,g).
- (i) In 'cold' conditions, increasing the variance leads to an increase in long-term performance, whereas
- (j) positive skewness has little effect. In 'warm' conditions, increasing variances and positive skewness both
- (k) lead to reductions in long-term performance.
- (1) The mean temperatures of cold and warm distributions are equal $\begin{bmatrix} 17 & 24 \end{bmatrix}$ across (b)–(d): variance is equal for (b) and