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> Motivation
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= Assessment of 2025 climate ¢
compared to the 1993-1995 C

and 1991-2000 average hydrol

nange effects was made as
nesapeake Bay TMDL critical period

ogy period.

" Precipitation and meteorological inputs for 2025, 2035, 2045, and
2055, representing a change of 30, 40, 50, and 60-years as

compared to the 1993-1995 critical period and 1991-2000
average hydrology period were developed to examine the expected

effects of climate change.



> Approach
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= As per STAC (2016)!"l and CBP Climate Resiliency Workgroup
recommendations, expected change in 2025 precipitation was
developed based on long-term trends in historical observations,
and an ensemble of climate models for 2050 and beyond.

= Modeling workgroup in September 2018l recommended
combining the two approaches for the periods between 2025 and
2050 (i.e., 2035 and 2045).

[1] Johnson et al., 2016 STAC Workshop Report — http://www.chesapeake.org/pubs/360_Johnson2016.pdf
[2] https://www.chesapeakebay.net/channel_files/26032/20180911b_- bhatt - mwcc_- application_of _phase_6_watershed_model_to_climate_change_assessment.pdf



> Long-term trends in historical observations
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1. Linear trend analysis of county scale 1927-2014 2. Estimated 30-year change for the 3. Estimated change spatially
(88-years) historical observations counties aggregated for the river basins
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= General circulation models
included in then most recently
completed Coupled Model
Intercomparison Project Phase 5,
CMIP5 (Taylor et al. 2012) were
used for the precipitation and
temperature projections.

=" The GCMs utilize forcings based
on potential future socio-
economic and natural scenarios
defined as Representative
Concentration Pathways (RCPs).

> Global Climate Models (GCMs)

A Mean annual precipitation using ensemble of 31 GCM projections
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Ensemble median (circles) and 10th and 90th percentile (triangles) ranges are shown.

Taylor, K.E., R.J. Stouffer, and G.A. Meehl. 2012. “An Overview of CMIP5 and the Experiment Design.” Bulletin of the American meteorological Society 93(4): 485-498



> Global Climate Models (GCMs)
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A Mean annual temperature using ensemble of 31 GCM projections

= Statistically downscaled data for a e . w AR .
climate models and S .
corresponding realizations were el Q s ]
retrieved from an online archive % e |
accessed through the Geo Data = 0 Lo om 2;2_80 — -
Portal (Bureau of Reclamation, 2 _ | S
2013). The decision to use an 5§ faas i —
existent downscaled dataset e \ _ i = |
rather than either developing or g - Avra s
applying a tailored statistical & 15l _Z;S"“ dos i s : N
climate downscaling process was 2 - Orz . -
based upon the s 1 | cow | ; | Y
recommendations of the STAC 2 i i e Goro -
(Johnson et al. 2016). o5 e —

RCP|2.6 RCFI’4.5 RCPIB.S RCI;Z.G RCFI’4.5 RCP|8.5

Ensemble median (circles) and 10th and 90th percentile (triangles) ranges are shown.

Bureau of Reclamation. 2013. Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, 116 p. https://gdo-dcp.uclinl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf
Johnson et al., 2016 STAC Workshop Report — http://www.chesapeake.org/pubs/360_Johnson2016.pdf



v

Chesapeake Bay Program
Science. Restoration Parthershp,

Monthly ensemble analyses for each county
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S -
5 . GCMs (RCP 4.5)

- ™

= B o ;

Q 20 O ® .

5 L e

EL 0 - gl ®

- .

e

T -20

="

&)

O 0 1 2 3 4 5 mmp
Ll

Degrees Celsius Difference

N &~
o o o

R
(=3

Precipitation Change (percent)

- N w ~ w

Temperature Change (Celsius)

o

> Ensemble median of monthly change (seasonality)
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Ensemble median (circles) and 10th and 90th percentile (triangles) ranges are shown.



> Ensemble medians vs. long-term trends in historical observations
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RCP 4.5 ensemble medians vs. Extrapolation of long-term trends

-o—-Ensemble median of GCMs

-a-Long-term trends in historical observations
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Estimated change in mean annual temperature

RCP 4.5 31 Member Ensemble Median
°C Delta Change (2025 vs. 1995)
[ ]os89-1.01
[ 11.02-1.00
B 1.10-1.14
B 1.15-1.19

+1.12°C
for the
Watershed

RCP 4.5 31 Member Ensemble Median
°C Delta Change (2045 vs. 1995)
[ ]151-168
[ 1169-1.79
I 1.80-1.86
B 187-194

+1.84 °C
for the
Watershed

RCP 4.5 31 Member Ensemble Median
°C Delta Change (2035 vs. 1995)
\ 1.21-1.34
[1135-1.42
I 143-1.46
Bl 147-1.50

+1.45 °C
for the
Watershed

RCP 4.5 31 Member Ensemble Median
°C Delta Change (2055 vs. 1995)
[ 11.74-192
[ 1193-206
B 207-2.16
Bl 217-228

+2.12°C
for the
Watershed

stimated change for 2025, 2035, 2045, and 2055 (vs. 1995)

Estimated change in mean annual precipitation volume

2025 Extrapolation of Long-term Trends
Percent change (2025 vs. 1995)
[ 107%-2.0%
[ 21%-2.8%
B 29%-3.6%
B 37%-4.
Bl 47%-5.

+3.11%
for the
Watershed

(a)

[ ]43%-47%
[48%-51%
B 5.2% - 5.5%
Bl 56% -
Il 6.0% -

+5.34 %

for the

Watershed
d

()

0

25 50

2035 Hybrid of Extrapolation and GCMs
Percent change (2035 vs. 1995)
[ 124%-3.3%
[ 3.4%-3.9%
B 4.0% - 4.5%
Bl 46%-5.3%
Il 54% -6.3%

+4.21 %
for the
Watershed

(b)

RCP 4.5 31-Member Ensemble Median
Percent change (2055 vs. 1995)
[ ]5.0%-57% :

[7158%-6.5%
B 66%-7.2%
B 7.3% - 8.0%
Bl 5.1% - 8.8%

+6.91 %
for the
Watershed

(d)

100 Miles



> Precipitation intensity ‘ \
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= Analyses of daily precipitation by
Karl and Knight (1998) and RN
Groisman et al. (2004) provide .
estimates of changes in rainfall
intensity classes. hearoge
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= Such analysis was based on

Fi1G. 10. Data are partitioned by three megaregions: one in which

app roximate [y 6000 stations for rainfall is strongly influenced by tropical cyclones, one in which more
. . . than 20% of precipitation falls in frozen form, and an intermediate

the perIOd in each reglon that has region (Groisman et al. 2001c). For these regions and nationwide
a sufficient amount of [Ong_te rm (shown in low left corner), the contribution of various parts of daily
. .. . . . precipitation distribution to the linear trend of the total annual pre-
daily precipitation time series. cipitation [% (100 yr) '] for the 1908-2002 period is shown. Trends

are partitioned by 10th-percentile rainfall intensity classes. Linear
trends for the upper 10% class in the intermediate region and na-
tionwide are statistically significant at the 0.05 level. The intermediate
region occupies 60% of the contiguous United States and is dubbed

in Fig. 9 as the major part of the country. Groi t al. (2004)
roisman et al.

Karl, T.R., and R.W. Knight. 1998. “Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States.” Bulletin of the American Meteorological Society 79(2): 231-42.
Groisman, P.Y., R.W. Knight, T.R. Karl, et al. 2004. “Contemporary Changes of the Hydrological Cycle over the Contiguous United States: Trends Derived from In Situ Observations.” Journal of hydrometeorology 5(1): 64—85.



QVV Mean monthly change to hourly model inputs
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" The Phase 6 Watershed Model was calibrated to the precipitation
and meteorological data obtained from NLDAS-2.

" For the time-disaggregation of mean monthly change in
precipitation, monthly volume change was first divided into 10
precipitation intensity deciles using a-priori distribution.

= The volume change for intensity deciles were applied as monthly
factors to hourly precipitation events of the decile.

= Mean monthly change in air temperatures were applied as
monthly additive values.

" This method did not change the frequency of precipitation.



> Potential Evapotranspiration (PET)

* Hamon and Hargreaves-Samani PET methods were evaluated for
estimating change in potential evapotranspiration (PET).

" Due to the similarities between

estimated changes produced . = Hamon
by the Hargreaves-Samani ® Hargreaves Samani
and Penman-Monteith 10% # Penman Monteith Short Reference
methods, along with guidance 8% 6.7%
provided by CBP STAC and the 6%
recommendation of the CBP

) 4%
Modeling Workgroup,
Hargreaves-Samani was used. %%

0%
2025 (+1.12° C) 2050 (+2.03° C)
Shenk et al. 2021
b o e B e e e o ek et ter (oot s Dt o 2025 Pl Targets o Adr s Cimate Change.” B0 Publcation 328-21 Annapolis 1, 145 55 12



> Estimated change for 2025, 2035, 2045, and 2055 (vs. 1995)
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Estimated change in mean annual potential evapotranspiration

RCP 4.5 31 Member Ensemble Median
Percent Change (2025 vs. 1995)
[ 124%-3.0%
[ 3.1%-3.3%
B 3.4%-3.6%
B 3.7%-4.3%

+3.36 %
for the
Watershed

(a)

RCP 4.5 31 Member Ensemble Median
Percent Change (2045 vs. 1995)
[ 141%-4.9%
[ 50%-54%
B 55%-6.1%
B 62%-7.0%

+5.54 %
for the
Watershed

(c)

0

25 50

RCP 4.5 31 Member Ensemble Median
Percent Change (2035 vs. 1995)
[ 132%-3.9%
[ 40%-4.3%
B 4.4% - 4.8%
B 49%-57%

+4.43 %
for the
Watershed

(b)

RCP 4.5 31 Member Ensemble Median
Percent Change (2055 vs. 1995)
[ 148%-56%
57%-6.2%
B 6.3%-6.8%
Bl 69%-8.1%

+6.35 %
for the
Watershed

(d)

100 Miles

Estimated change in mean annual precipitation volume

2025 Extrapolation of Long-term Trends
Percent change (2025 vs. 1995)
[ 107%-2.0%
[ 21%-2.8%
B 29%-3.6%
Bl 3.7%-4.6%
Bl 4.7%-5.7%

+3.11%
for the
Watershed

(a)

[ ]43%-47%
[48%-51%
B 5.2% - 5.5%
B 56% -5.9%
Il 6.0% - 6.6%

+5.34 %

for the

Watershed
d

()
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25 50

2035 Hybrid of Extrapolation and GCMs
Percent change (2035 vs. 1995)
[ 124%-33%
[ 3.4%-3.9%
B 4.0% - 4.5%
Bl 46%-5.3%
Il 54% -6.3%

+4.21 %
for the
Watershed

(b)

RCP 4.5 31-Member Ensemble Median
Percent change (2055 vs. 1995)
[ ]5.0%-57%
[7158%-6.5%
B 66%-7.2%
B 7.3% - 8.0%
Bl 5.1% - 8.8%

+6.91 %
for the
Watershed

(d)

100 Miles
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&> Summary
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= Statistically downscaled data for climate models included in CMIP5
were used.

= Expected change in 2025 precipitation was developed based on
long-term trends in historical observations, and an ensemble of

GCMs for 2050 and beyond.

" We used GCMs for temperature and Hargreaves-Samani method
for estimating change in PET.

= Mean monthly change was applied using delta method to adjust
hourly 1991-2000 NLDAS-2 precipitation and meteorological data.






AAV CBP 2021 Climate Change Assessment

Seasonal Change in Streamflow for Susquehanna and Major Rivers for 2025 and 2055

G S R — " Model results provide: [a]
R T Shertelr e 20 estimate of seasonal

N / ‘ change due to 30 to 60
years of climate change,
and [b] underlying event
scale changes in the
streamflow (showing Year
Susquehanna River Streamflow (ft3/s) at Marietta, PA 199 4 as an exampl E).
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