

Chesapeake Conservancy

Leveraging deep learning and data science for the conservation and restoration movement

Joel Dunn, CEO Chesapeake Conservancy jdunn@chesapeakeconservancy.org

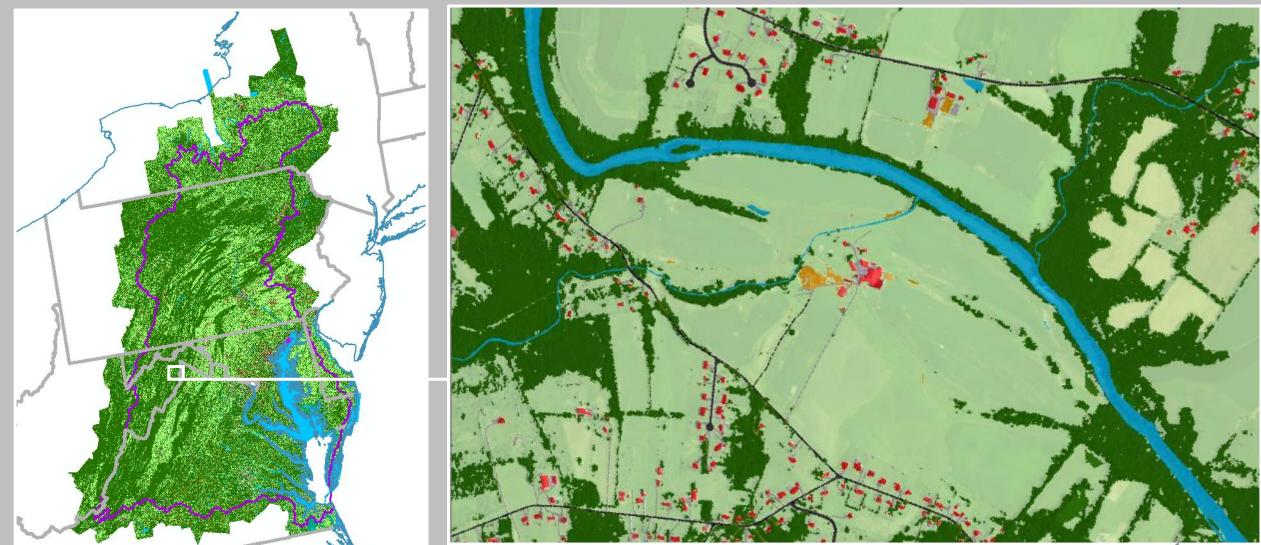
Chesapeake Conservancy

Mission: To conserve and restore the natural and cultural resources of the Chesapeake Bay watershed for the enjoyment, education, and inspiration of this and future generations. We serve as a catalyst for change, advancing strong public and private partnerships, developing and using new technology, and empowering environmental stewardship.

2023-2030 Goal: To conserve and restore 30% of the Chesapeake Watershed by 2030 with emphasis on landscapes of significant ecological and cultural value, to engage and empower diverse conservation leaders, and build the foundation of an enduring institution.



High-resolution Data Planning at the Parcel Scale



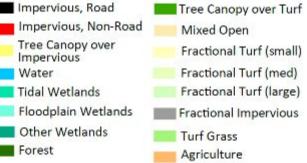
Land Use Conversion

2013 NAIP

2013 Land Cover

2013 Land Use

Chesapeake Conservancy



Restoration

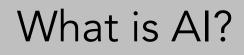
Deep Learning and Data Science for Conservation and Restoration

"Getting the right practices, in the right places, at the right scale"

Microsoft Game Day ad

they say I will never open my own business

Deep Learning (AI) and Data Science in Conservation



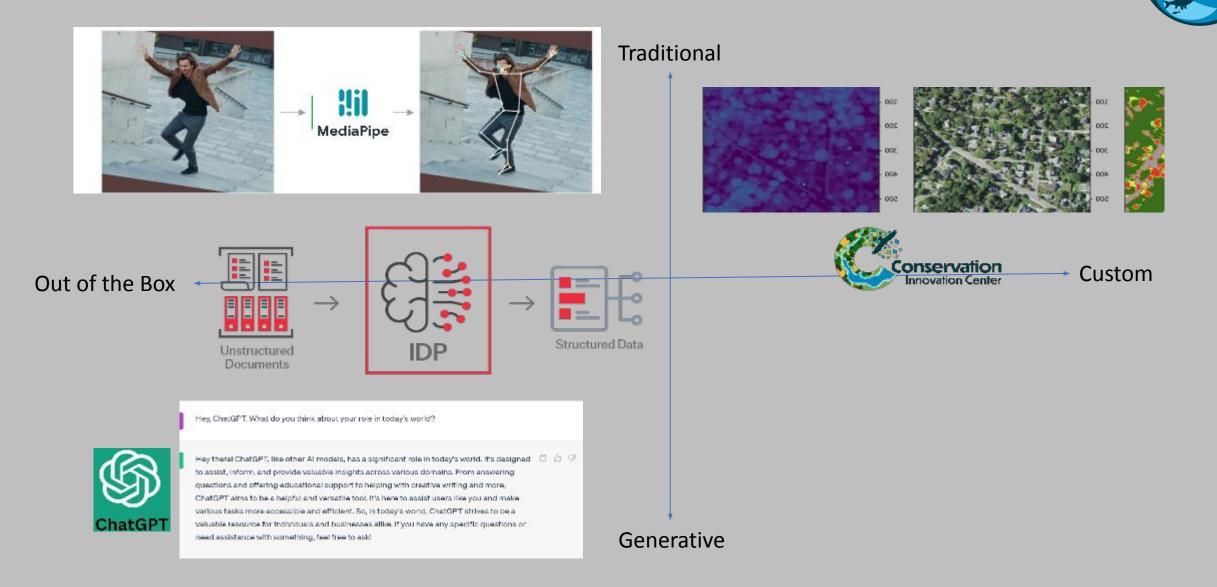
Why use AI?

When to use AI?

When NOT to use AI?

How can AI help?

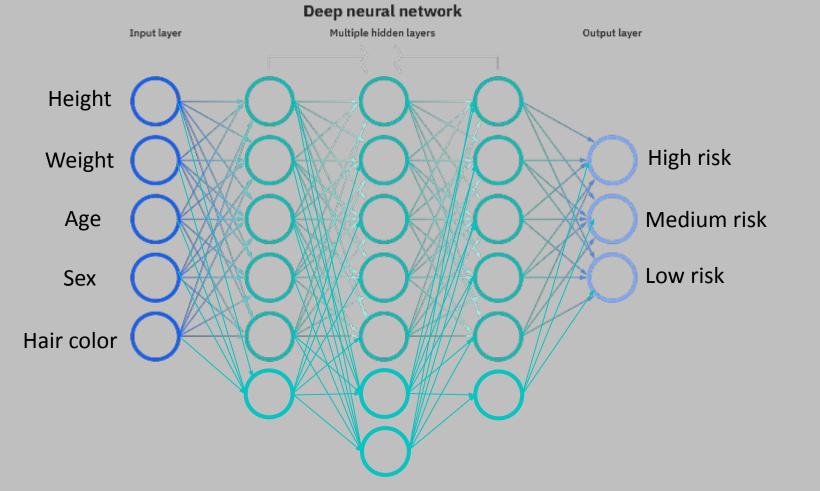
What is Al? Types of Al



hesapeal

onservancy

Deep Learning (AI)

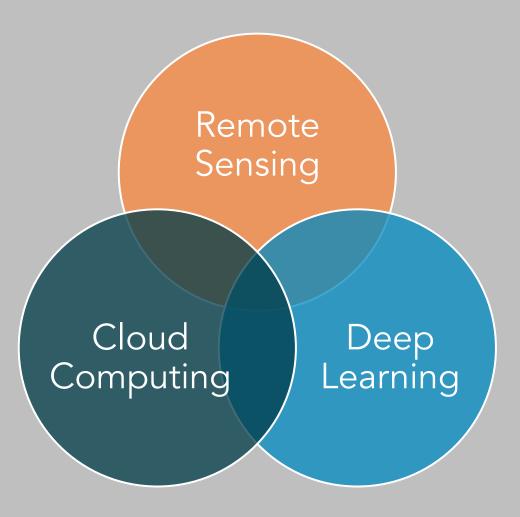


Good at learning non-linearities, conditionality, complex interactions

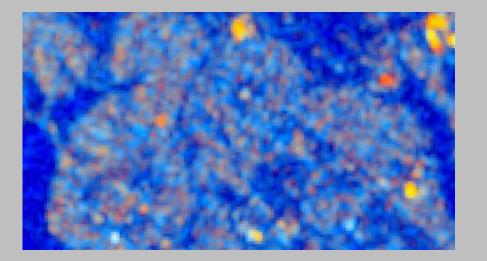
Why Use AI?

- 1. Effectively leverage big data
- 2. Improve accuracy
- 3. Solve old problems
- 4. Answer new questions

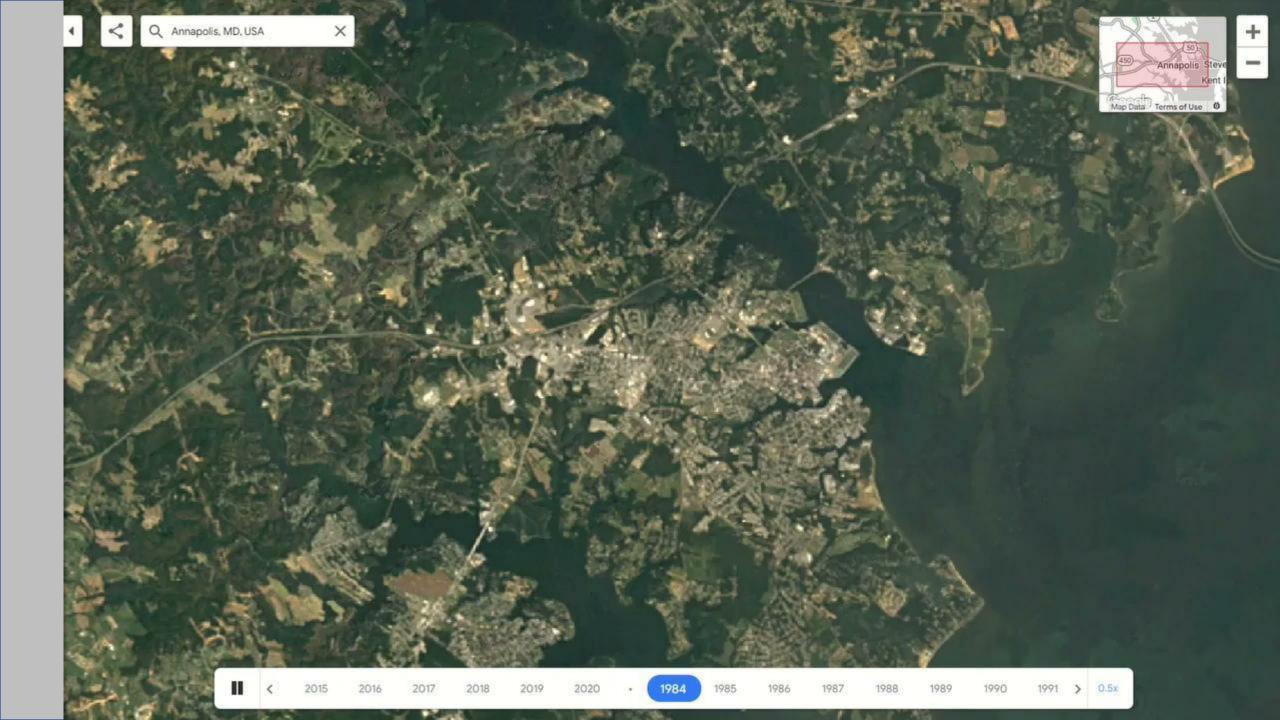
How to utilize deep learning



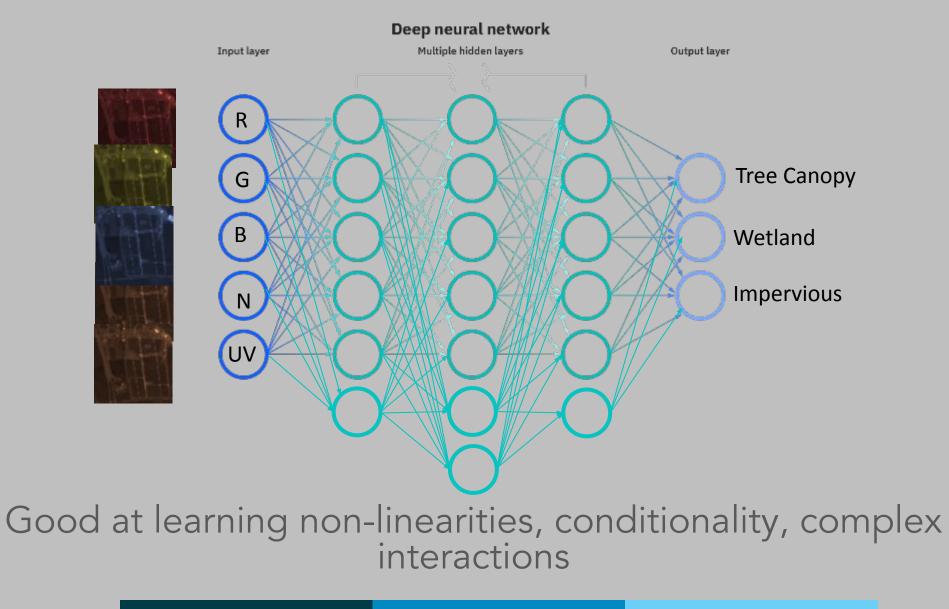
Big Data - remote sensing

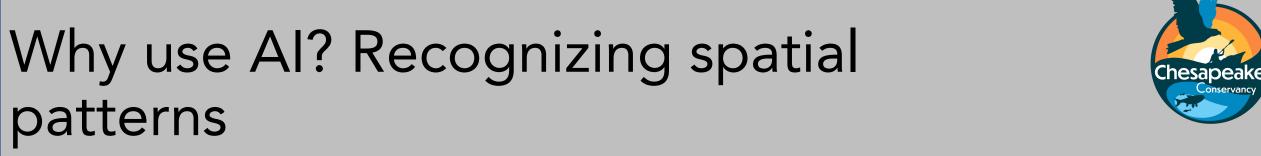


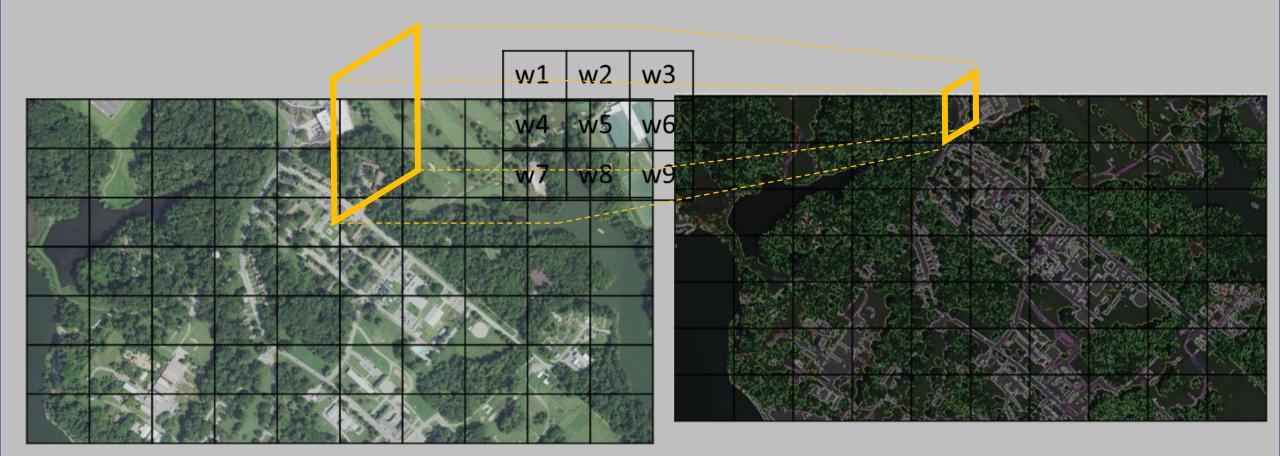
- 1. Data about Earth's surface
- 2. Collected by satellite or plane
- 3. Can have multiple 'bands'
- 4. Many types of data (radar, lidar, etc.)

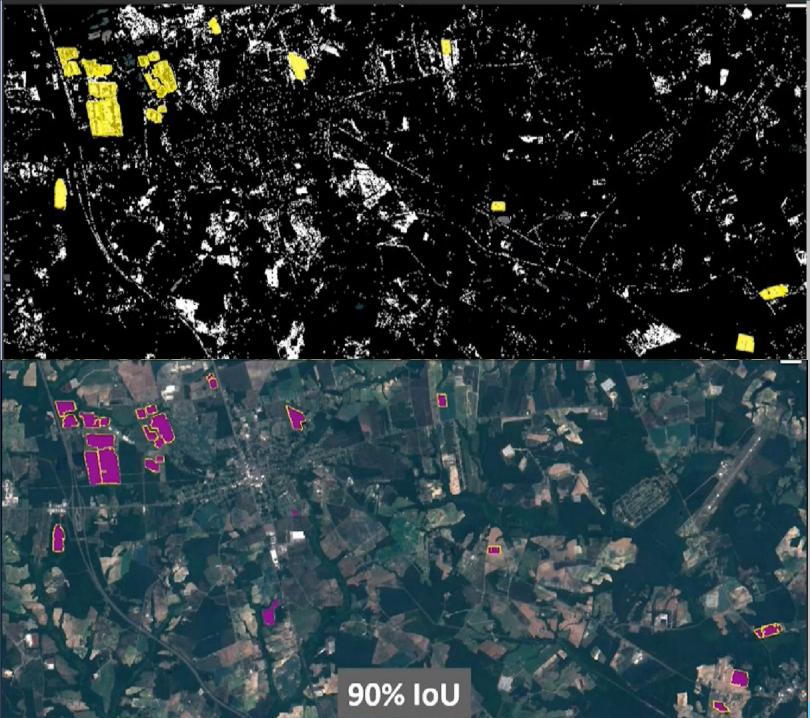


Why use AI? Remote sensing









Traditional Machine Learning (ML) – evaluates pixels independently

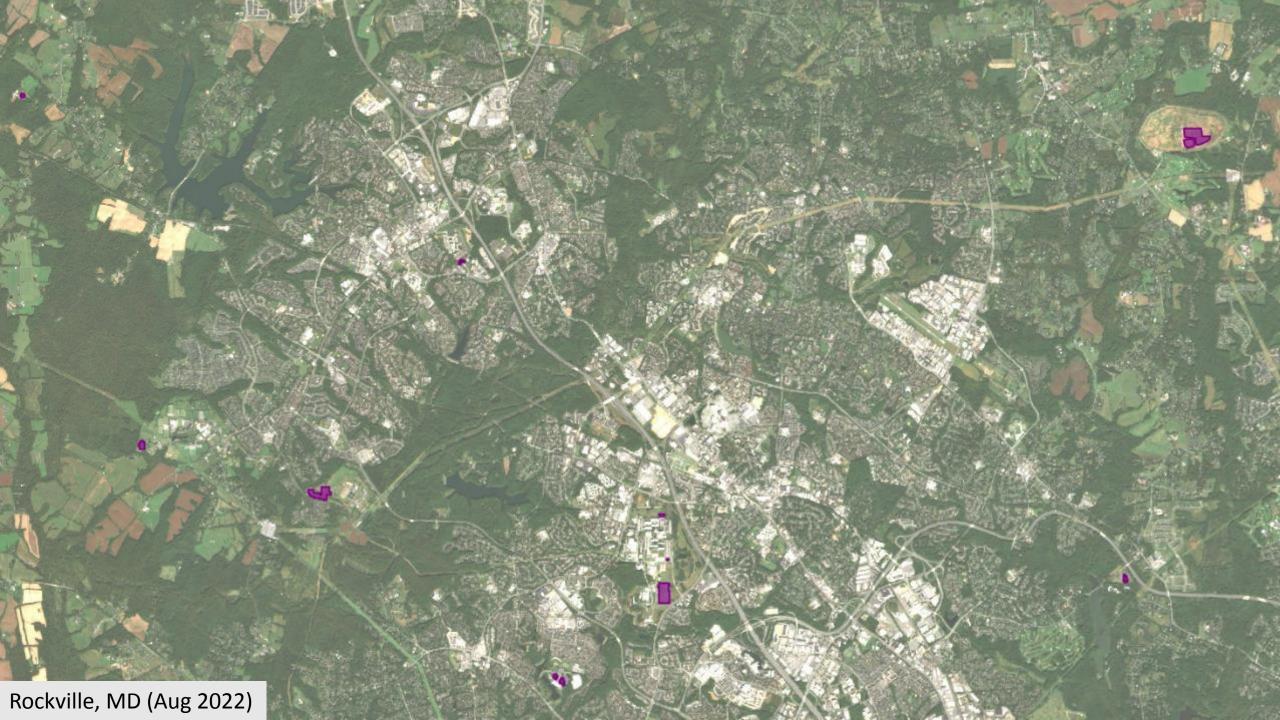
> Real solar arrays

ML identified solar arrays

Deep-learning identified solar arrays

Deep learning – uses the shape and context of objects in images Why use AI? To answer new questions: Solar development in the Chesapeake

- 1. Where are ground mounted solar arrays? (AI)
- 2. What land uses transitioned into solar? (Not AI)
- 3. Where is solar most likely to go next? (Not AI)

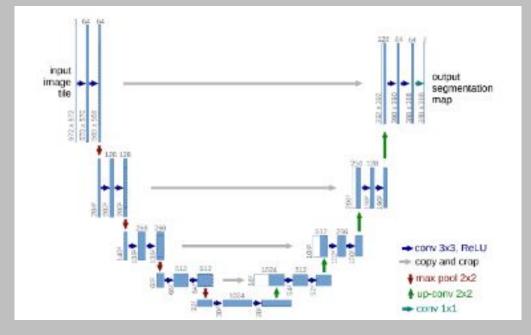


Al Solar Mapping

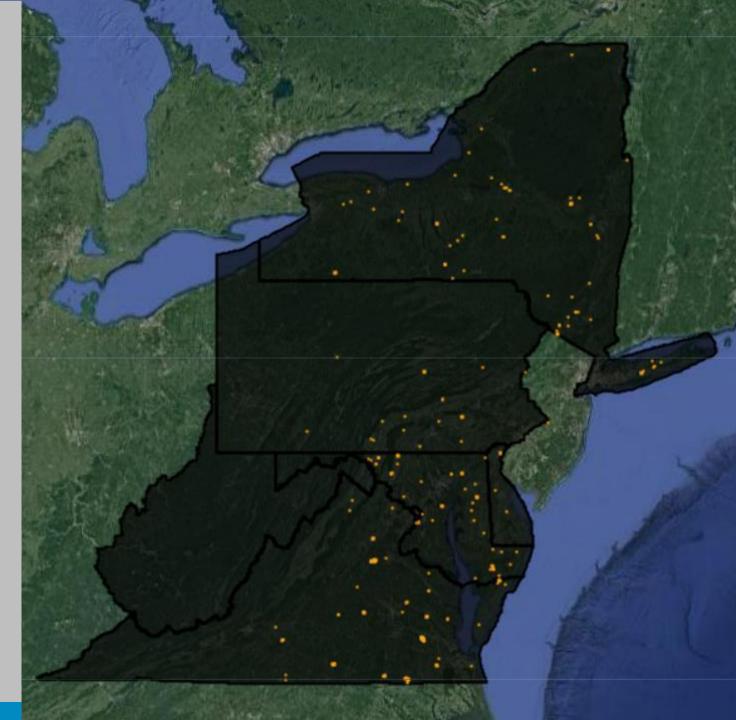


Map all solar arrays in DC, DE, MD, PA, NY, VA, WV Each year from 2017 - 2021

Al Solar Mapping



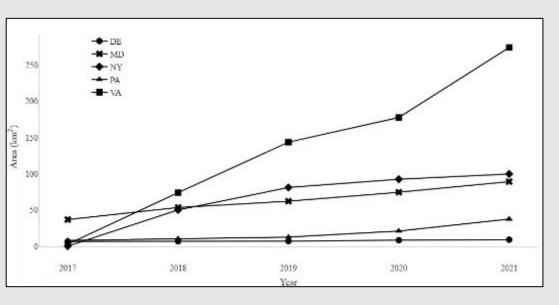
Recall: 90.2% Precision: 90.1% IoU: 85.6%

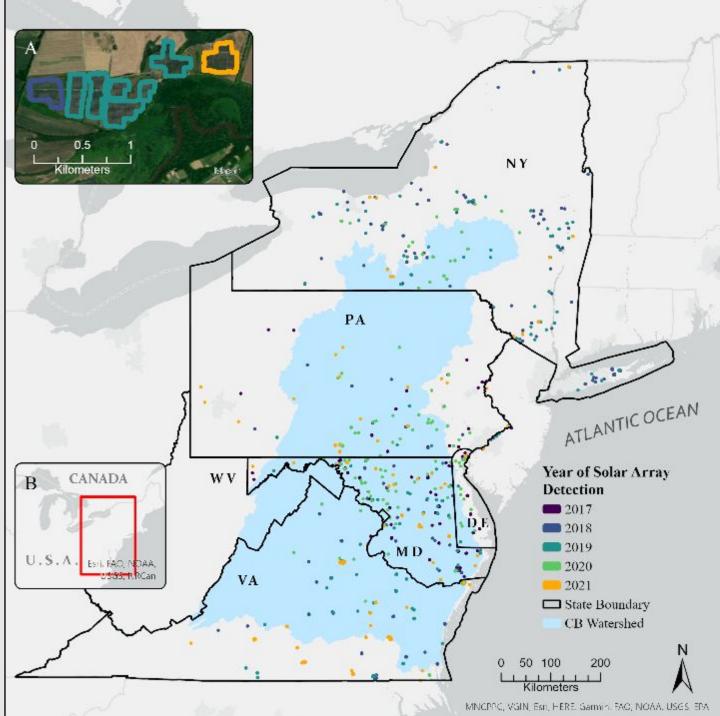


Solar analysis

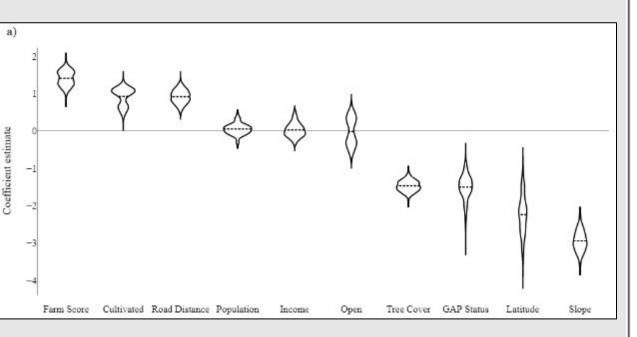
2017 - 2021

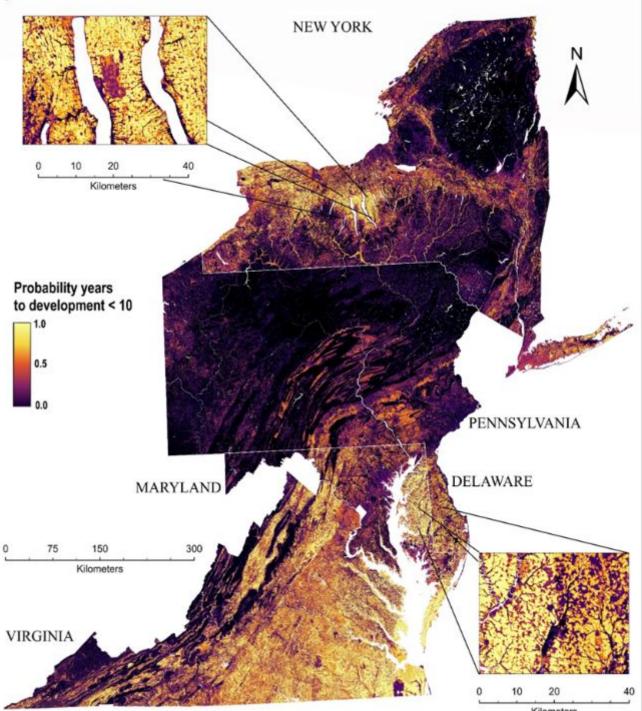
State	Area (%)	Rate of increase
DE	0.9 (1.79E-04)	$1.40 \pm 0.34 \text{E-}03$
MD	8.9 (3.54E-04)	$5.00 \pm 0.34 \text{E-}03$
NY	9.9 (0.82E-04)	$1.33 \pm 0.48 \text{E-}03$
PA	3.7 (0.32E-04)	$0.61 \pm 0.34 \text{E-}03$
VA	27.4 (2.69E-04)	$6.27 \pm 0.34 \text{E-03}$





When NOT to sue Al: Solar analysis





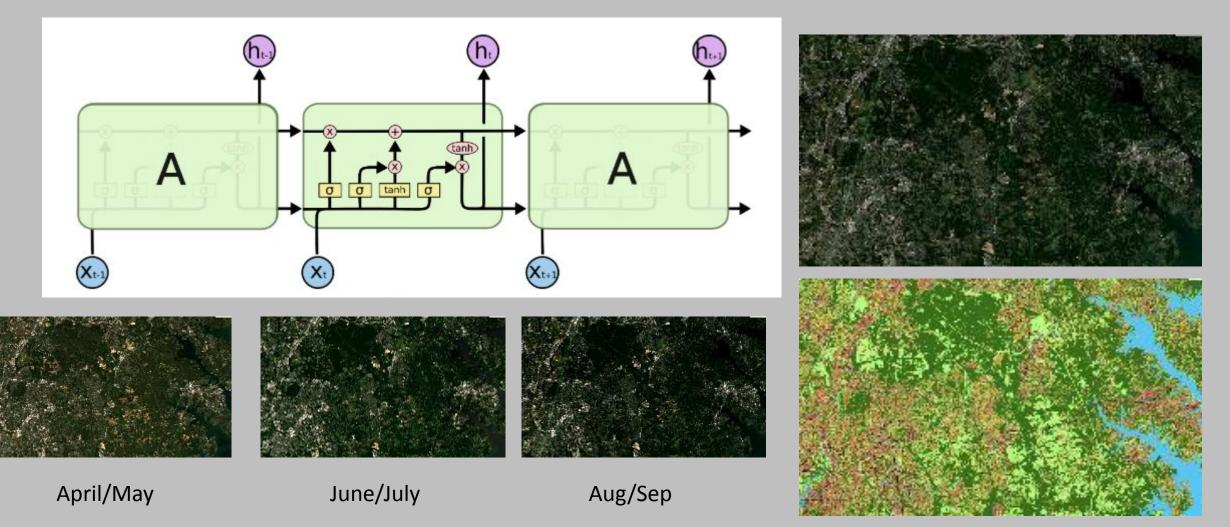
b)

Why use AI? Solve old problems: Wetland Mapping

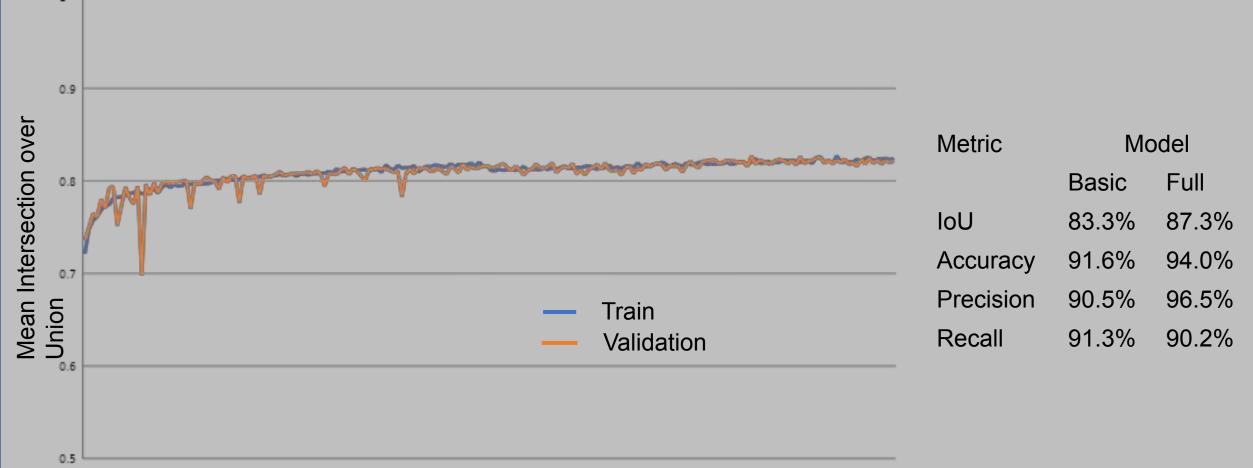
Goal: Develop a model that can map non-tidal wetlands across the entire Chesapeake Bay watershed

- 1. Accurate wetland maps needed for compliance & modeling
- 2. Existing wetland data inadequate
- 3. Wetlands are variable across space and through time

Why use AI? Big Data and Temporal Signals

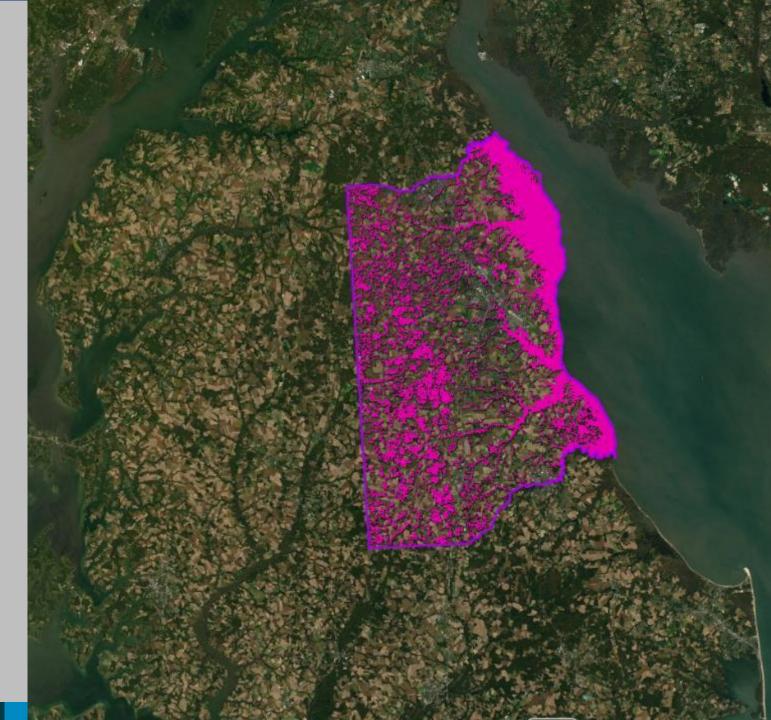


Why use AI? State of the art accuracy

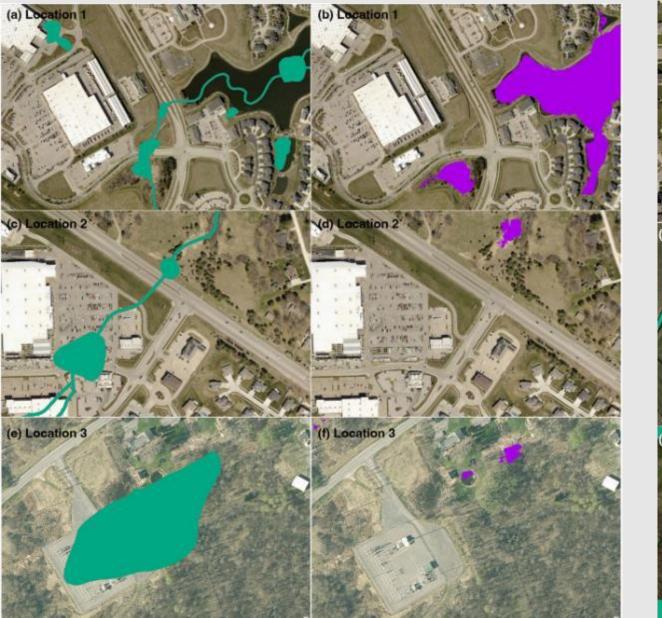


Epoch

Why use Al? Accurate wetland maps



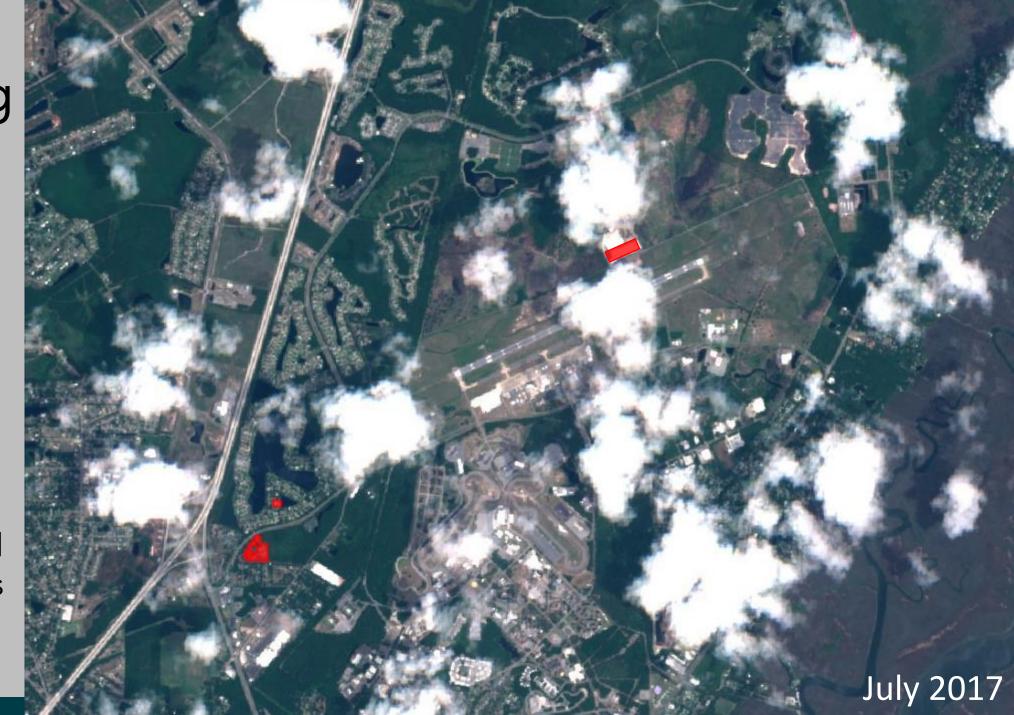
Improve wetland maps



Model NWI predictions abe (c) Location 2 (d) Location 2 (f) Location 3 (e) Location 3

Real-time monitoring

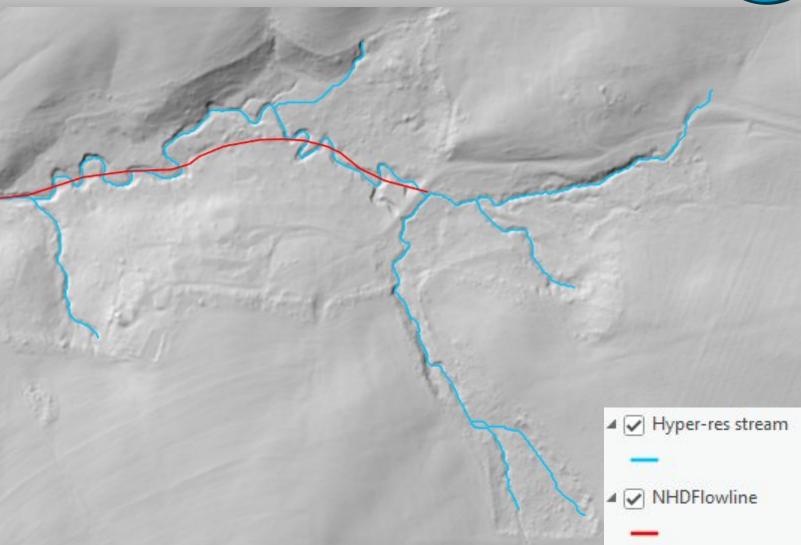
- New images every 5 days
- Detect environmental changes in near real-time
- Better understand land cover transitions



Hyper resolution hydrography

- Produced in partnership between CC, UMBC, and EPA's Chesapeake Bay Program
- Maps headward extent and lateral positioning of stream channels more precisely than NHD

UMBC



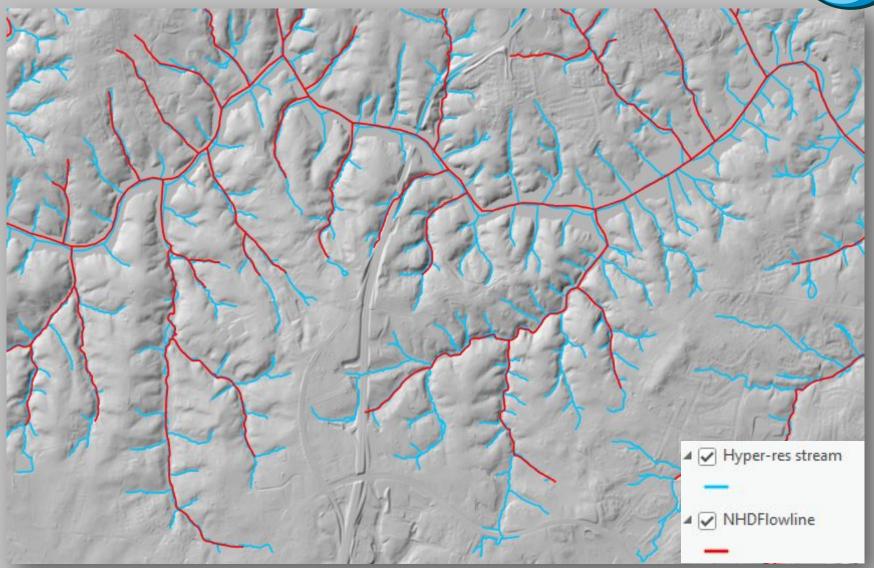
Chesapeake Conservancy

Hyper resolution hydrography

• Maps approximately 2.5x as many stream miles as 1:24,000 resolution NHD

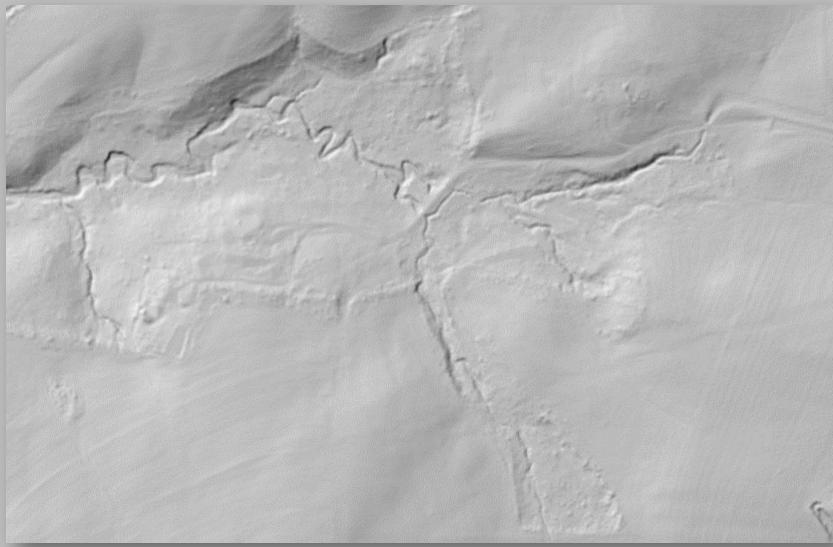
 Covers entire Chesapeake Bay watershed

UMBC



How is it made?

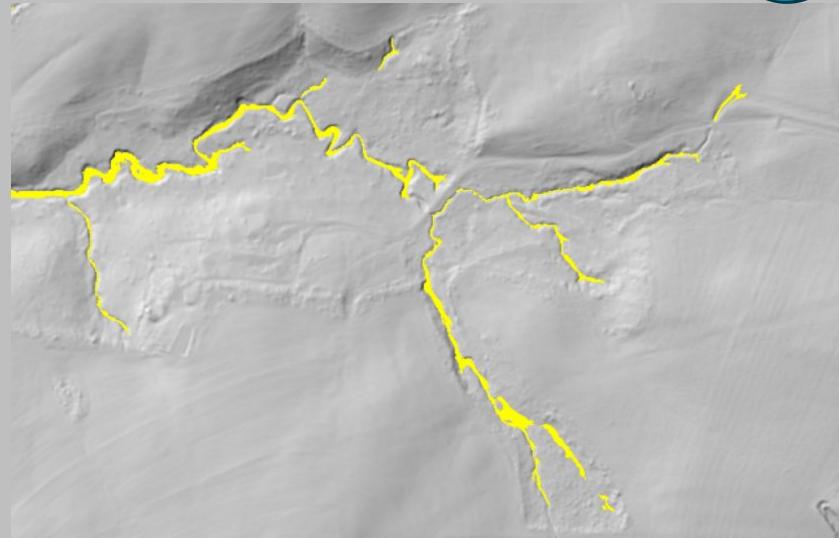
- Detailed LiDAR elevation models serve as the foundation
- Geomorphic interpretation of terrain identifies visible channelized areas
- Tracing algorithm connects 2D stream polygons into 1D linear stream network UMBC



How it's made

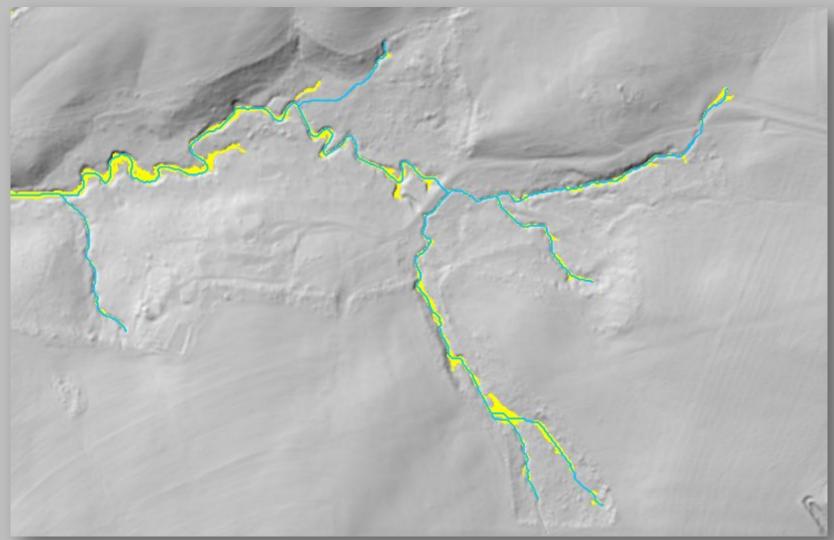
- Detailed lidar elevation models serve as the foundation
- Geomorphic interpretation of terrain identifies visible channelized areas
- Tracing algorithm connects 2D stream polygons into 1D linear stream network

UMBC



How it's made

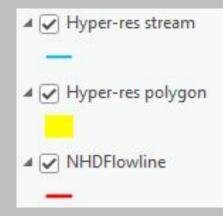
- Detailed lidar elevation models serve as the foundation
- Geomorphic interpretation of terrain identifies visible channelized areas
- Tracing algorithm connects 2D stream polygons into 1D linear stream network



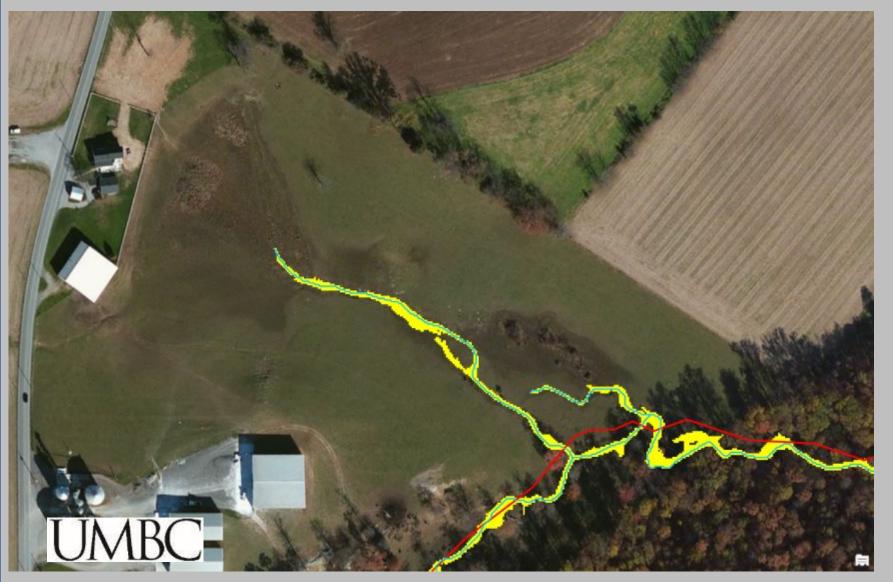
Applications of data

Unbuffered drainage from CAFO to buffered stream

76.1811062°W 40.0054670°N

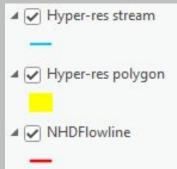


Applications of data

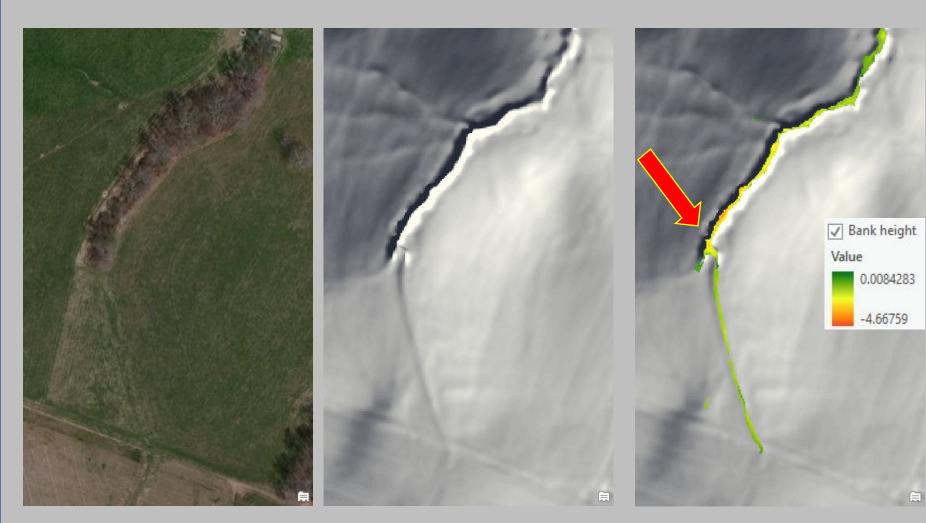


Unbuffered drainage from livestock pasture to buffered stream

76.4115075°W 39.7265478°N



Applications of data

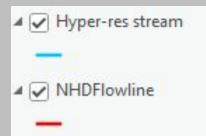


Identification of headcutting based on locally high bank height at transition from field drainage to forested buffer

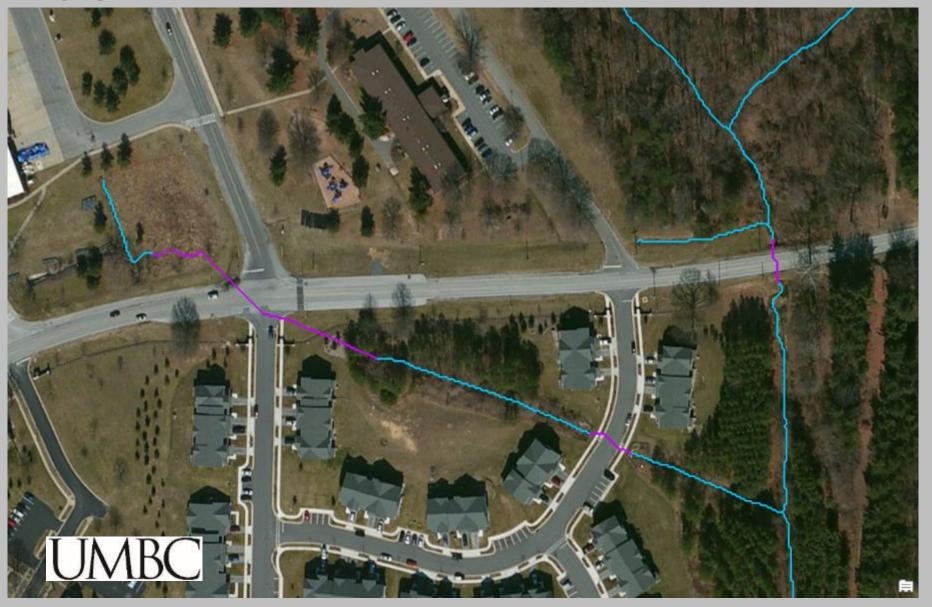
Bank heights lessen downstream

Applications of data

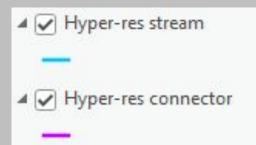
Tributaries to drinking water reservoir in Burtonsville, MD



Applications of data



Identification of culverts and road crossings in suburban area



What is species distribution modeling?

- open woodland and brushy areas, particularly oak or pine woods with sandy soil
- for dispersal, degree-day at 50°F base: ~286
- caterpillar diet: legume or Fabaceae family
- adult diet: nectar from a variety of flowers including milkweed
- soil type and moisture suitable for vegetation

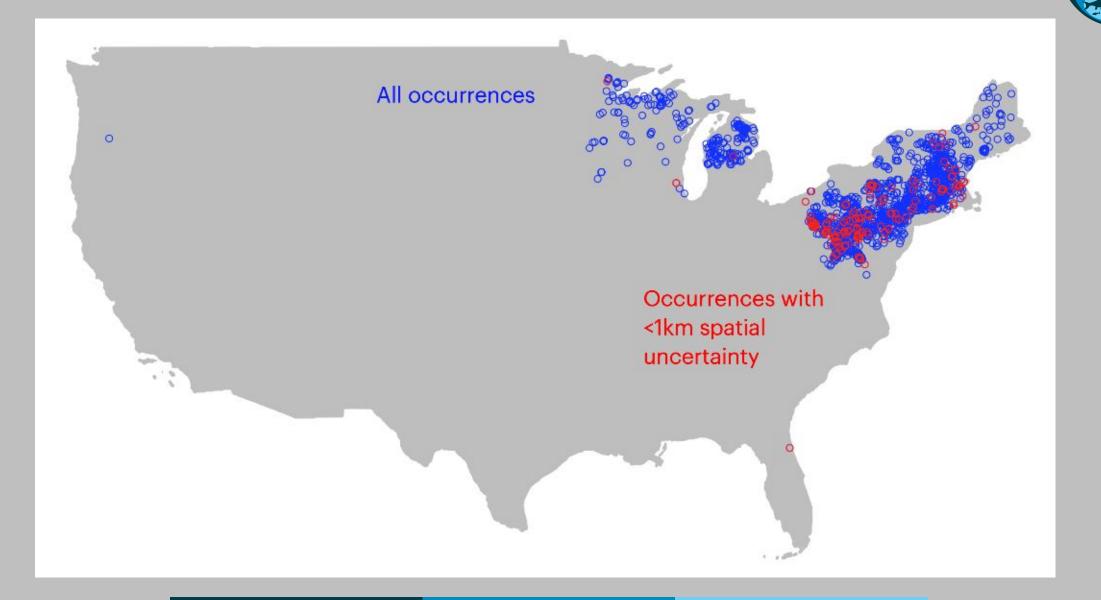
- Ecological Niche = Conditions and Resources
- How to use machine learning to find out the ecological niche??
- Conditions and resources of the observed locations vs.
 other locations
- Model: in environmental space
- Project it in geographic space

Achalarus lyciades, the hoary edge

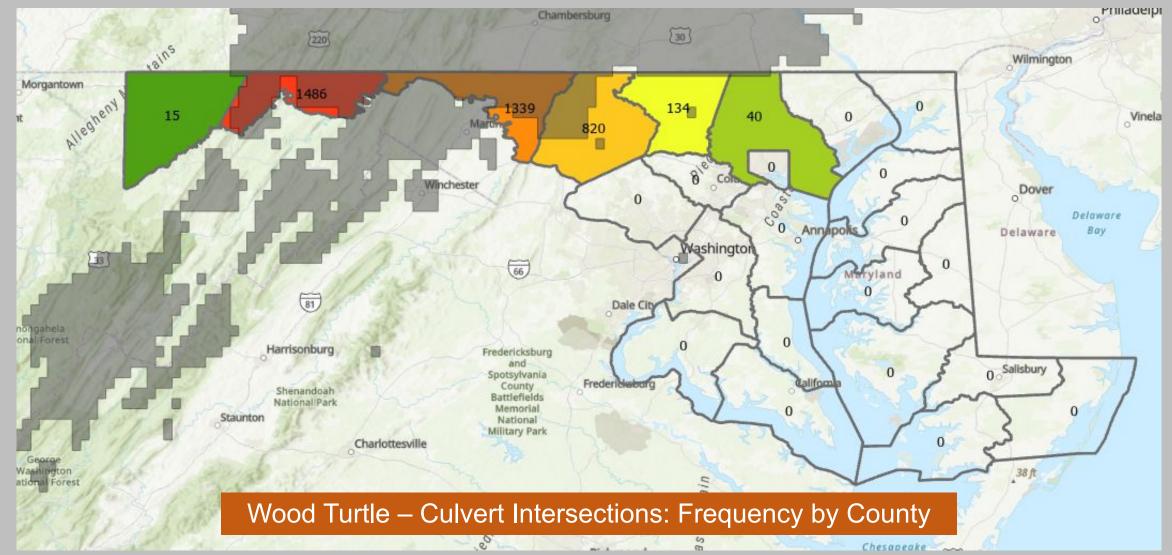
GIS Support for Assessing Culvert Impediments for Wood Turtle Movement -EXAMPLE

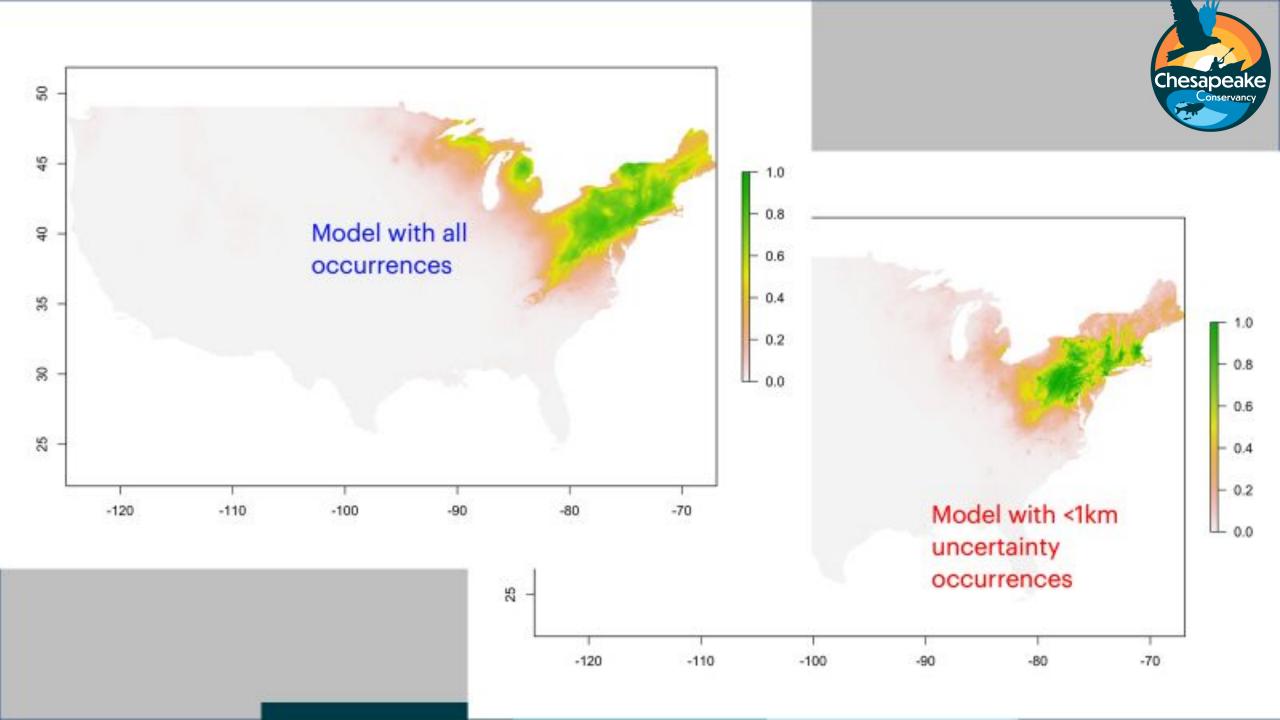
Wood Turtle (Glyptemys insculpta)

Wood Turtle Distribution - EXAMPLE

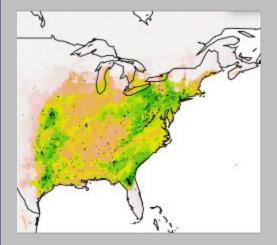


GIS Support for Assessing Culvert Impediments for Wood Turtle Movement

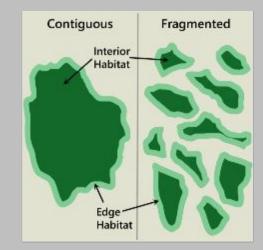




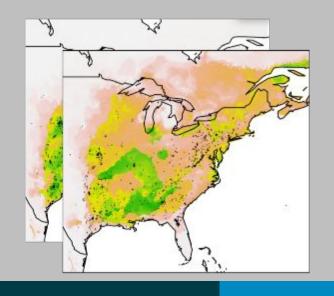
Species Distribution Modeling Objectives



High resolution mapping of species distribution under current climate



Fragmentation impact on high resolution species distribution under current climate



Moderate resolution mapping of species distribution under current and future climate

Chesapeake Conservancy in Scientific Publications

- Mainali, K. P., E. Slud, M. C. Singer, and W. F. Fagan. 2022. A better index for analysis of co-occurrence and similarity. Science Advances 8:1–9.
- Evans, M. J., K. Mainali, E. R. Soobitzky, E. Mills, and S. Minnemeyer. (n.d.). Predicting patterns of solar energy buildout to identify opportunities for biodiversity conservation. Biological Conservation 283 (2023): 110074.
- Mainali, K., M. M. Evans, D. Saavedra, E. Mills, B. Madsen, and S. Minnemeyer. 2023a. Convolutional neural network for high-resolution wetland mapping with open data: Variable selection and the challenges of a generalizable model. Science of The Total Environment 861:160622.
- Mainali, K., T. Hefley, L. Ries, and W. F. Fagan. 2020. Matching expert range maps with species distribution model predictions. Conservation Biology 34:1292–1304.
- Mainali, K. P., P. B. Singh, M. Evans, A. Adhikari, Y. Hu, and H. Hu. 2023b. A brighter shade of future climate on Himalayan musk deer Moschus leucogaster. Scientific Reports 13:12771.
- Mainali, K. P., D. L. Warren, K. Dhileepan, A. McConnachie, L. Strathie, G. Hassan, D. Karki, B. B. Shrestha, and C. Parmesan. 2015. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Global Change Biology 21:4464–4480.

Questions? Joel Dunn CEO, Chesapeake Conservancy Conservancy jdunn@chesapeakeconservancy.org jdunn@chesapeakeconservancy.org

