Climate Change and the Chesapeake TMDL

Gary Shenk

Presentation to STAC BioChar Workshop 5/25/23

1

Less of This

Photos: Chesapeake Bay Program 2

More of This

Photos: Chesapeake Bay Program 3

Conceptual Model

Nutrient sources . . .

... acting in different landscapes ...

Chesapeake Bay TMDL

Necessitated by failure to meet water quality standards

TMDL Models

If we change what we do on the landscape...

...how will that change nitrogen, phosphorus, and sediment?

Data and Model Inputs -

Pollution Control Data Land Use Data Point Sources Data Septic Data U.S. Census Data Agricultural Data

Land Use Change Model

> Airshed Model

Precipitation Data Meteorological Data Elevation Data Soil Data

Phase 6 Watershed Model/CAST

...and what will be the oxygen, clarity, and chlorophyll in the Chesapeake Bay?

Estuary Model

Dissolved Oxygen effect per pound of nutrient released in the watershed

Dividing up the effort: More Impact, Do More

Nitrogen

Phase 6 Phosphorus

Guidelines for Reduction Goals

• Areas that contribute the most to the problem must do the most to resolve the problem.

TMDL Decision

State-basin allocations

Nitrogen, Phosphorus, and Sediment

Sufficient to meet oxygen, clarity, and chlorophyll water quality standards

Watershed Implementation Plans (WIPs)

Reduce sources...

TMDL is a continuation of previous goals

Year	Phase	Goal	
• 1987	0	40% reduction (Watershed & Bay models unlinked)	
• 1992	2	40% of controllable loads (forest, air, NY, DE, WV unincluded)	
• 1997	4.1	Added VA Tribs. (Rappahannock, York, & James with controls)	
• 2003	4.3	Reallocation of Tributary Strategies	
• 2010	5.3.0	2010 Chesapeake TMDL	
• 2011	5.3.2	Phase 2 WIP targets	
• 2017	6	Phase 3 WIP targets (You are here!)	
• 2028	7	TBD	

Accounting for climate change

YEAR 2025

3.11% increase in average annual rainfall volume

6.28% increase in average annual rainfall volume

YEAR 2050

Accounting for climate change

YEAR 2050

YEAR 2025

14

Balance of effects – Science Question

CBP studied 21 different effects producing an overall lower level of oxygen

Modeled load reductions from CAST-2019 (current version of the CBP watershed model)

Climate effects in perspective

Chesapeake Bay TMDL Load Indicator Total Nitrogen

Climate Adjustment

Chesapeake Bay TMDL Load Indicator Total Phosphorus

Web team will reformat Including addressing accessibility

Climate Adjustment

Biochar

Metal	Initial concentration ug/L	Post biochar filter ug/L	% removed
Total Copper	54.2	7.88	71.1%
Total Zinc	1,018	39.0	92.6%

Thank you

Photos: Chesapeake Bay Program 23