Developing and Deploying the Next Generation of Mainstream Nitrogen Removal Technology through Partial Denitrification-Anammox (PdNA)

<text>

Hampton Roads Sanitation District (HRSD)

Population Served ~1.9 million (20 cities and counties in SE Virginia)

We operate 8 major and 6 smaller treatment plants and more than 100 pump stations

Service area is over 5,000 square miles

Combined wastewater treatment capacity - 225 million gallons/day

HRSD Drivers for Technology Research and Innovation

- Process Intensification
- Virginia Enhanced Nutrient Removal Certainty Program (ENRCP)
 - Load equivalent of TN = 4 mg/L by 2026
 - Load equivalent of TP = 0.3 mg/L by 2032
- SWIFT demands on wastewater nutrient removal
- Minimizing SWIFT capital and O&M costs
- Emerging treatment issues PFAS, 1,4-dioxane, AMR, pathogens, etc
- Biosolids stabilization, land app, dewatering, product quality
- [Other research needs and objectives are managed by HRSD Water Quality]

Conventional Nitrification-Denitrification

Nitrogen Removal

MLE Process (N Removal)

HRSD York River Plant – 15 MGD

4-Stage Bardenpho (Better N Removal)

HRSD Army Base Plant – 18 MGD

What about phosphorus removal?

- Chemical precipitation
 - Alum = aluminum sulfate
 - Ferric = ferric sulfate OR ferric chloride
 - consumes alkalinity, generates solids
- Biological P removal (bio-P, EBPR, etc)

Biological Phosphorus Removal (Bio-P)

Phosphorus accumulating organisms (PAOs) have a unique anaerobic/aerobic metabolism

Anaerobic Conditions

Bio-P in A/O Process

ANA = Anaerobic AER = Aerobic

Addition of an anaerobic selector...

Add Bio-P to MLE... "A2O Process"

A²/O or Phoredox Process

ANA = Anaerobic ANX = Anoxic AER = Aerobic

Virginia Initiative Process (VIP)

- Developed collaboratively by HRSD, Virginia Tech, and CH2M Hill
- Biological N and P removal

5-Stage Bardenpho

Generally - "5-stage BNR" Add second anoxic zone to a Bio-P processes (for example VIP + 2, MUCT+2, A2O+2, etc)

SWIFT will provide multiple regional benefits

SWIFT Goal: ~50 MGD by 2032; ~\$1.2B

Sustainable Water Initiative for Tomorrow

SWIFT Research Center (1 MGD) at HRSD Nansemond Treatment Plant (30 MGD)

Nansemond Plant - 5-Stage Bardenpho Configuration Stable and reliable TN removal is a must!

- Feedback ammonia-base aeration control
- Feedback nitrate-based internal mixed liquor recycle (NRCY) flow control
- Feedforward/feedback methanol feed control

Conventional Nitrification-Denitrification

Nitrite Shunt - a form of "Shortcut Nitrogen Removal"

Deammonification through Partial Nitritation-Anammox (PNA) {PNA is the "best" form of Shortcut Nitrogen Removal}

Main challenges:

- 1. Sufficient retention of anammox while allowing for SRT pressure on other organisms
- 2. Nitrite availability for anammox through NOB out-selection

Sidestream Treatment – N & P

DEMON[®] PNA at HRSD York River (15 MGD) - 2012

Partial Nitritation-Anammox (PNA) Sidestream vs. Mainstream

Sidestream

Mature and robust process with 200-300 Full-Scale installations including:

- HRSD York River TP Demon (2012)
- HRSD James River TP AnitaMox (2013)

Mainstream

Limited full-coole reports of

Limited full-scale reports of mainstream PNA:

- Strass, Austria (Wett et al, 2013)
- PUB Changi, Singapore (Cao et al, 2016)
- Xi'an, China (Li et al, 2019)

The complexity of NOB out-selection limits full scale implementation of mainstream PNA

Taking a DETOUR to achieve mainstream shortcut N removal – Partial Denitrification-Anammox (PdNA)

Partial Denitrification/Anammox (PdNA) Development Timeline

HRSD Chesapeake-Elizabeth Plant - BNR Pilot

Benefits of Shortcut N Removal

Conventional - - Nitrite Shunt ···· PdNA -- PNA

DOI: <u>10.1039/D2EW00247G</u> (Paper) <u>Environ. Sci.: Water Res. Technol.</u>, 2022, **8**, 2398-2410

Advancing the understanding of mainstream shortcut nitrogen removal: resource efficiency, carbon redirection, and plant capacity⁺

Kester McCullough () *^{ab}, Stephanie Klaus () ^a, Michael Parsons ^a, Christopher Wilson ^a and Charles B. Bott ^a ^a ModelEAU, Département de génie civil, Pavillon Pouliot, Université Laval, Québec G1K 7P4, QC, Canada

^b Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA 23455, USA

Benefits of Shortcut N Removal

Conventional - Nitrite Shunt ··· PdNA -- PNA

32

PdNA @ HRSD

- PdNA pilot work:
 - A/B BNR pilot polishing MBBR (2012-2018)
 - York River filter pilot (2020-2021)
 - James River MBBR & IFAS (2020-present)
- PdNA full-scale status
 - York River filter 2018
 - James River IFAS 2022
 - Nansemond IFAS full plant design/construction 2024 startup
 - James River MBBR in construction 2025 startup
 - Army Base IFAS feasibility study

Polishing PdNA Implementation – Post Anoxic (we know how to do this; now it's just an engineering challenge)

York River Plant (15 MGD) Denitrification Filters

Deep-bed filters with 2 to 3 mm silica sand and NOxbased feedforward-feedback methanol dosing control

The Problem

- 1. Limited aerobic capacity
- 2. Excessive energy/chemical usage
 - Sodium hydroxide
 - Ferric
 - Methanol

York River Full-Scale Filters Transition to PdNA

How did we grow mainstream anammox?

- Tight methanol dosing control (provide stable nitrate residual)
 Ammonia vs NOX (AvN) control upstream
 Minimize backwash and air scour

- 4. Wait patiently

Fofana et al., 2022

York River Plant

Fofana et al., 2022

York River PdNA Filter Pilot (HRSD/DCWater/Xylem) Glyceroi VS Methanol

- > Two downflow filters
- ➢ 6 ft deep bed x 1 ft²
- Feedback carbon dosing control
- Seeded media from full-scale filters

James River Plant (20 MGD) A20 w/aerobic IFAS

The Problem

- 1. Limited aerobic capacity in existing tanks
- 2. Existing A2O will not meet future TN limits

PdNA MBBR and IFAS Pilot Facility

James River Integrated PdNA

James River Plant PdNA IFAS Upgrade

The Solution

- 1. Update aeration control to AvN
- 2. Convert A2O to a 5-stage process
- 3. PdNA in the second anoxic zone

Moving Media IFAS

WWW2 MEDIA

Anammox activity confirmed in IFAS

Fixed Media IFAS

Fixed Media IFAS

- Installed in November
- Just started step-feeding and glycerol
- Removable sheets for batch testing

Nansemond Plant 5-stage Bardenpho 30 to 50 MGD Expansion

The Problem: Low influent C/N leading to excessive methanol usage

Nansemond Plant Expansion 5-stage Bardenpho

The Solution: PdNA IFAS in second anoxic zone

- First cell for PdNA
- Cells 2 and 3 for full denite polishing

Army Base (18 MGD) 5-stage Bardenpho PdNA IFAS Feasibility study

The Problem: High methanol usage

NOB Outselection (PNA) is hard... PdNA is "easy"

Challenge:

The biggest challenge for polishing PdNA is operating AvN aeration control to consistently meet the required effluent targets out of the PdNA zone

Nansemond Plant - 5-Stage Bardenpho Configuration Stable and reliable TN removal is a must!

- Feedback ammonia-base aeration control
- Feedback nitrate-based internal mixed liquor recycle (NRCY) flow control
- Feedforward/feedback methanol feed control

Existing ABAC – Feedback only, PI control

WANT THIS CONSTANT

Upgraded ABAC (to be extended to AvN – future)

Research

Feedforward – three approaches being evaluated at HRSD:

- 1. Controller adjusts for changes in influent flow only (already applied to AvN) Mike Parsons, James River (AvN)
- 2. Feedforward model predictive controller from regression analysis of calibrated process model simulations (no additional sensors) Ali Gagnon, VIP (ABAC now, soon to AvN)
- 3. Hybrid mechanistic and data/ML model with added NH4 sensor Jeff Sparks, Nansemond (ABAC soon to AvN)

All of this requires good sensors!

- Good NH4 measurement, even at low concentrations
- Discrimination of NO3 and NO2 without interferences
- Standard commercial sensors:
 - Dissolved oxygen optical probes are reasonably good
 - Orthophosphate wet chemical colorimetric
 - NH4
 - ion selective electrode
 - wet chemical gas sensitive electrode analyzer
 - NO3 and NO2
 - UV spectroscopy in probe or analyzer common, nitrite]wet chemical colorimetric rare still

HRSD's Online Analyzer – "Jarbalyzer" NH4, NO3, NO2, OP

Our new VIP BNR Pilot Facility

Low DO – Mechanistic Understanding of Acclimation of Autotrophs and Heterotrophs (and other practical issues)

