

Biochar in Urban Landscapes (Stormwater)

State of the Science

Paul Imhoff

Department of Civil and Environmental Engineering University of Delaware May 25, 2023

Historical Perspective

Growth of Biochar Research in Urban Stormwater

Exponential growth in research

Recommended Urban Stormwater BMPs for Biochar

Stormwater BMPs
Green Roof
Infiltration Trench/Basin
Bioretention/Sand Filter
Constructed Wetland
Filter Strip
Swale

• All involve amending existing engineered media (or soil) with biochar.

Sanjay et al. (2018) Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment, *Science of the Total Environment*, doi.org/10.1016/j.scitotenv.2018.01.037

Publications for Biochar Stormwater Application (All Years)

• Bioretention/sand filter – most studied.

But ... Not Unexpected

Publications for Stormwater BMPs (All Years)

• Bioretention/sand filter – most studied among <u>all BMPs</u>.

Biochar in Bioretention Media

• Bioretention/sand filter – most studied.

Biochar Feedstock in Stormwater Bioretention Investigations - Number of Studies

WWTP solids

Poultry Litter

Rice Husks

Wood biochars – most promising properties. Manures <u>may</u> leach pollutants.

Reduction Range

with Biochar

27 - 100%

32 - 94%

Log10 = 0.78 -

4.23

54 - 100%

Stormwater Pollutants with Biochar (Bioretention) - Number

•	Biochars	effective	for	most	pollutants	investigated.
•	Diochais	enective	IUI	<u>111051</u>	ponutants	mvesuyateu.

• Most studies in the laboratory.

Potential Impact of Large-Scale Applications - Bioretention

- Case study Ballona Creek Watershed (Los Angeles, CA)
- Focus on bacterial removal

• ~ 70,000 fewer biofilters with biochar-amended media.

Boehm et al. (2020) Biochar-augmented biofilters to improve pollutant removal from stormwater – can they improve receiving water quality?, *Environmental Science Water Research & Technology*, DOI: 10.1039/d0ew00027b

Recommended Urban Stormwater BMPs for Biochar

Stormwater BMPs
Green Roof
Infiltration Trench/Basin
Bioretention/Sand Filter
Constructed Wetland
Filter Strip
Swale

Sanjay et al. (2018) Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment, *Science of the Total Environment*, doi.org/10.1016/j.scitotenv.2018.01.037

UNIVERSITY OF DELAWARE

Potential Impact of Large-Scale Applications – Filter Strip

Potential Impact of Large-Scale Applications – Filter Strip

Case study – US 301 Roadside Vegetated Filter Strip in Delaware

- While 0% treatment compacted with time, compaction much less with biochar.
- Saturated hydraulic conductivity ~ 10 times larger with biochar after 2 years.

Akpinar D. (2023) Assessment of Biochar Addition to Natural and Engineered Soil Mixtures: Effects on Soil Structure, Plant Growth, and Hydrology, PhD Dissertation, University of Delaware.

UNIVERSITY OF DELAWARE

Potential Impact of Large-Scale Applications – Filter Strip

• Amendment with 2% (w/w) biochar increased annual infiltration 53 – 80%

Akpinar D. (2023) Assessment of Biochar Addition to Natural and Engineered Soil Mixtures: Effects on Soil Structure, Plant Growth, and Hydrology, PhD Dissertation, University of Delaware.

Potential Impact of Large-Scale Applications – Filter Strip

- 8 filter strips
 - 4 wood biochars
 - Sandy loam and loam

Biochar increased hydraulic conductivity in <u>all</u>

Summary

> What we know:

- Wood-derived biochar preferred (generally)
- Biochar amendments improve removal of most pollutants
- Biochar influence on water retention and infiltration challenging to predict, but models improving (filter strips)

What we don't know:

- Time-dependent effects on performance especially in field
- Impacts of watershed-scale application
- Are promising improvements from biochar addition to urban soils replicated for a wider range of soil textures and mineralogy (filter strips)

Acknowledgements

- Funding Sources
 - National Academy of Science Transportation Research Board (TRB)
 - National Fish and Wildlife Foundation
 - Delaware Department of Transportation
 - Maryland Transportation Authority
 - Howard EcoWorks