

Quantifying Ecosystem Services Benefits of Restoration and Conservation Best Management Practices in the Chesapeake Bay Watershed

Ryann Rossi^{1,2}, Carin Bisland³, Bill Jenkins⁴, Vanessa Van Note³, Bo Williams³, Emily Trentacoste⁵, Susan Yee⁶

- 1. Oak Ridge Institute for Science and Education, US EPA, Gulf Breeze, FL
- 2. Current Affiliation: St. Andrew and St. Joseph Bays Estuary Program, Florida State University, Panama City, FL
- 3. Chesapeake Bay Program Office, Region 3, US EPA, Annapolis, MD
- 4. US EPA Region 3, US EPA, Philadelphia, PA
- 5. US EPA Office of Research and Development, Washington, DC
- 6. US EPA Office of Research and Development, Gulf Breeze, FL

The views expressed in this presentation are those of the authors and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agendy.

Motivation for Project

- Some BMPs in the Watershed Agreement are behind on implementation – e.g. wetlands and forest buffers
- Need to enhance stakeholder buy-in of implementation of these practices, especially in headwater communities
- Want to be able to better communicate benefits associated with these practices, specifically beyond water quality
- Want to be able to quantitatively describe these benefits

Objectives for Project

- Develop a methodology CBP can use to identify priority ecosystem services associated with the restoration and revitalization of the watershed
- Quantify how management actions or BMPs may affect ecosystem services
- Communicate potential ecosystem services benefits of BMP implementation to stakeholders, including toward indirectly supporting watershed agreement outcomes
- Build off existing information and tools like Co-benefits TetraTech Report and CAST

Project Approach

Step 1. Clarify bounds for the project & determine which BMPs to focus on Step 2. Identify types of user groups potentially impacted by BMPs and the potential ecosystem services they care about

Step 3. Prioritize to a subset of ecosystem services of highest relevance

Step 4. Identify potential metrics to measure ecosystem services

- Step 5. Apply data and models to quantify ecosystem services supply per acre of BMP implementation
- Step 6. Communicate linkages between BMPs, Ecosystem Services, Users, and Watershed Agreement Outcomes

Step 1. Determine which BMPs to focus on

Focus on BMPs that are:

- 1. Lagging in implementation
- 2. Relevant to upstream communities
- Have associated Watershed Agreement goals that have not been met
- 4. Related to habitat conservation or restoration

Used these 4 "criteria" to scope

Scoped list of BMPs:

- Agricultural forest buffers
- Agricultural grass buffers
- Agricultural tree planting
- Agricultural cover crops
- Urban forest buffers
- Urban forest planting
- Urban tree planting
- Forest conservation
- Impervious surface reduction
- Wetland creation
- Wetland restoration

Step 2. Identify potential users impacted by BMPs and the ecosystem services they care about

Use ecosystem services

 classification systems such as
 NESCS Plus to identify potential
 ecosystem services (ES)

<u>"User"-centric stepwise approach</u> WHO is using these ecosystems and HOW? WHAT do they care about? WHERE are they getting benefits?

Helps to reduce ambiguity and increase direct relevance to people

"[biophysical] components of nature, directly enjoyed, consumed, or used to yield human well-being" (Boyd & Banzhaf 2007)

Who is impacted?

Beneficiaries or Users

Agricultural	Agricultural Processors	Farmers		
	Livestock Grazers	Foresters		
	Aquaculturists			
	Private Drinking Water Plant Operators			
Commercial / Industrial	Industrial Processors	Private Energy Generators		
	Pharmaceutical and Food Supplement Suppliers			
	Timber, Fiber, and Ornamental Extractors			
	Food Extractors	Fur / Hide Trappers and		
	Hunters			
	Property Owner			
Government,	Municipal Drinking Water Plant Operators			
Municipal, and	Public Energy Generators	Military / Coast Guard		
Residential	Residential & Nonresidential Property Owners			
Humanity	All Humans			
Inchirational	Artists			
Inspirational	Spiritual/Ceremonial Participants, Participants of Celebration			
Loarning	Researchers			
Learning	Educators and Students			
Non-Use	People Who Care - Option / Bequest			
	People Who Care - Existence			
	Anglers	Boaters		
Recreational	Waders/Swimmers/Divers	Hunters		
	Food Pickers/Gatherers	Experiencers/Viewers		
Subsistence	Water Subsisters	Food/Medicinal Subsisters		
	Timber/Fiber/Fur/Hide Subsisters			
	Building Material Subsisters			
Transportation	Transporters of Goods			
	Transporters of People			

What do they care about?

Ecosystem Service Attributes

Atmosphere	Air quality Wind s	trength/speed	Precipitation	Sunlight	Temperature
Soil	Soil quantity	Soil quality	Substrate qu	antity S	Substrate quality
Water	Water qua	lity Water q	uantity Wa	ater mover	ment
Fauna	Fauna community Charismatic faur Pest predator/depres S	Edible fauna na dator fauna piritually/cultu	Medicinal Rare fauna Com rally important	fauna Pollina mercially i fauna	Keystone fauna ating fauna mportant fauna
Flora	Flora communityEdible floraMedicinal floraKeystone floraCharismatic floraRare floraCommercially important floraSpiritually/culturally important flora				
Fungi	Fungal community Commercially impo	Edible fu ortant fungi	ngi Medici Spiritually/cu	nal fungi Ilturally im	Rare fungi portant fungi
Other Natural Components	Fuel qualityFuel quantityFiber material quantityFiber material qualityMineral/chemical quantityMineral/chemical qualityOther natural materials for artistic use or consumption (e.g. shells, acorns, honey)				
Composite (and Extreme Events)	Site Appeal	Sounds Phenomena (e	Scents .g. sunsets, nor	View thern light	vscapes s, etc)
	Ecological condition				
	Open space Regulating Services				
	Extreme Events	Flooding Extreme weather events			Wildfire Earthquakes

Refined Initial List with Document Review and Partner Feedback

- Use ecosystem services

 classification systems such as
 NESCS Plus to identify potential
 ecosystem services (ES)
- Mine Chesapeake Bay Program (CBP) documents and reports for ecosystem services to add to list
- Feedback from partners on priorities in their regions on anything missing

<u>"User"-centric stepwise approach</u> WHO is using these ecosystems and HOW? WHAT do they care about? WHERE are they getting benefits?

	Ferret	Additional Co-Benefits					
Best Management Practice	Buffers	Habitat Biodiversity	Brook Trout	Stream Health	Fish Habitat	Healthy Watersheds	Tree Canopy
Agricultural Forest Buffer	5	4	4.5	4	4.5	4	4.5
Forest Conservation	3.5	5	4	4	4	5	5
Forest Harvesting Practices	3.5	2	2	4	3	3	2
Narrow Forest Buffer	5	2.5	3.5	2	3.5	2	5
Streamside Forest Buffers	5	4	4.5	3	4.5	3	5
Urban Forest Buffers	5	5	5	4	4	3.5	4.5

Tetra Tech Co-Benefits Report

In total, review identified focal BMPs could provide 45 potential types of ecosystem services benefitting 46 different types of users

Ecosystem Services

Best Management Practices

Agricultural forest buffers Agricultural grass buffers Agricultural tree planting Agricultural cover crops Urban forest buffers Urban forest planting Urban tree planting Forest conservation Impervious surface reduction Wetland creation Wetland restoration

air pollutant removal carbon sequestration charismatic species richness brook trout presence striped bass presence commercially valuable trees open space for infrastructure open space for learning open space for spiritual practice open space for training green space habitat quality/size environment for ethical reasons environment for future uses resources for research erosion control deer population small mammal presence waterfowl presence blue crab presence oyster presence edible plants presence grasses for feed/grazing

wood and paper products fungi presence fauna for medical uses flora for medical uses supply of depredators supply of pest predators mitigate pest risk supply of pollinators natural materials fire risk flood control high quality soil energy efficiency mitigate heat risk viewscapes ability to dilute and receive discharge clean water (nutrients) contaminant reduction pathogen reduction (from water) pathogen reduction (animal health) water clarity quantity of water

All Humans Residents Global citizens Anglers Aquaculturists Artists Boaters, kayakers **Educators & Students Energy Generators Experiencers & Viewers** Birder Wildlife Viewer Camper Farmers Ag/Rural landowner Food & Medical Subsisters Food Extractors Watermen Food Pickers & Gatherers Foresters Fur/Hide Trappers/Hunters Hunters Industrial dischargers

User Groups

Irrigators Livestock grazers Military / Coast Guard Municipal/Private Drinking Water Local water authority Public wastewater People Who Care (Existence) People Who Care (Option / Bequest) Pharmaceutical/Supplement Suppliers **Public Sector Property Owners** Local government Researchers **Residential Property Owners** Low income/disadvantaged Residents Renters Resource dependent business **Restoration businesses** Urban businesses Recreation business **Ceremonial/Celebration Participants** Timber, Fiber, Fur/Hide Subsisters Timber, Fiber, Ornamental Extractors Waders, Swimmers, Divers

Example: Wetland BMPs provide many ecosystem services & benefit many types of natural resource users

Step 3. Prioritize Most Relevant Ecosystem Services

- Chesapeake Bay Scientific Technical and Reporting Team (STAR) and Local Government Advisory Committee (LGAC) partners asked to identify <u>top 5</u> ecosystem services and users most relevant to their region or expertise
- Used the FEGS Scoping Tool to assign importance weights based on:
 - I. Stakeholder groups most likely to be impacted or of high priority
 - II. The different roles those stakeholders play as users of natural resources
 - III. The ecosystem services those users care about

Based on Multi-criteria Decision Analysis (MCDA) approaches

FEGS Scoping Tool

Top Ecosystem Services under Alternative Prioritization

• Explored different weighting options based on 1) documents, 2) partner rankings, 3) farmers as most likely to be impacted by BMPs, and 4) underrepresented/low-income communities to address inclusivity and EJ goals

Step 4. Identify potential ecosystem services metrics

- "User-centric" perspective to identify metrics that would resonate with stakeholders by asking "What directly matters to each beneficiary?"
 - E.g., Water quality for drinking vs. recreation
 - E.g., Edible flora for Recreational food gatherers vs. livestock grazers
- Reviewed existing tools, literature, and libraries for example metrics

EcoService Models Library (ESML)

A searchable database of ecological models for estimating the production of ecosystem goods and services.

Metrics for National and Regional Assessment of Aquatic, Marine, and Terrestrial Final Ecosystem Goods and Services

Office of Research and Development Center for Patric Health & Centercemental Researchert (Pacific Ecological Systems Deleven

Example ecosystem services metrics

FEGS	Short list of metrics	Source
Air quality	concentration of CO, NO2, O3, PM 10, PM 2.5, SO2	iTree (Nowak 2020)
Edible flora	plant diversity, cover of edible species	EnviroAtlas (Pickard et al. 2015)
Habitat quality	habitat suitability for species of interest, species richness	inVEST; Smith et al 2017 (Smith et al. 2017, Sharp et al. 2020)
Heat risk	daytime and nighttime temperature reduction	EnviroAtlas (Pickard et al. 2015)
High quality soil	soil C content, N fixation, pH, salinity, type, percent sand,	NESP; Smith et al, 2017 (Russell et al. 2013,
	bulk density, organic matter	Olander et al. 2017, Smith et al. 2017)
Open space	open space access index; distance to open space	EnviroAtlas; NESP (Russell et al. 2013,
		Pickard et al. 2015, Olander et al. 2017)
Pest predator fauna	density of certain pest predators (e.g., ladybugs)	ESML (US EPA 2020)
Pollinator fauna	area of wild pollinator habitat; ratio of pollinator habitat to	EnviroAtlas; inVEST (Pickard et al. 2015,
	pollinator dependent crops	Sharp et al. 2020, Warnell et al. 2020)
Risk of flooding	flood depth, duration, extent and frequency; maximum	EnviroAtlas; inVEST; EPA H2O; ESML
	retained rainwater; soil precipitation retention; surface	(Russell et al. 2013, Pickard et al. 2015,
	water runoff; wave attenuation	Sharp et al. 2020)
Water clarity	mean sediment retention; secchi depth; turbidity	Angradi et al. (2018)
Water quality- nutrients	concentration of nitrates in groundwater	Terziotti et al. (2018)
Water quality- pathogens	concentration of harmful bacteria (e.g., fecal coliform)	Wainger et al. (2015)
Water quantity	water availability	inVEST (Sharp et al. 2020)

Step 5. Apply data and models to quantify ES supply per acre of BMP implementation

- Each BMP associated with a CAST land cover class
- Identified or generated statistical models of ES supply per acre of landcover

Ecosystem Services Quantification Methods

Air Quality

Air pollutant removal rates in urban and rural areas obtained from **i-Tree** and multiplied by acres of tree cover

Bird Diversity

Species area curves relate increasing acres of land cover type to potential bird species richness, obtained from USGS GAP

Flood Control Curve number method based on landcover, soil type

Carbon Sequestration

Average rates of burial of atmospheric carbon into soil (i.e., in support of mitigating climate change) by landcover type, obtained from **COMET-Planner** and literature review, multiplied by acres of landcover

Pollination

InVEST pollinator model to

assign index of habitat suitability based on land cover, and characteristics of pollinators such as nesting and foraging distance

https://ian.umces.edu/media-library_e

Ecosystem Services Quantification Methods

Open Space Acres of landcover per capita identified as wetland, tree canopy, shrubland, and low vegetation

Heat Risk Reduction

Soil Quality Average carbon

content of soil by landcover type, obtained from and literature review, multiplied by acres of landcover

Pathogen Reduction

Fecal indicator bacteria removal efficiencies obtained from literature review, multiplied by acres of landcover type

https://ian.umces.edu/media-library_7

Estimated ES Values (Scaled) Vary by BMP

Step 6. Communicate Benefits of Restoration & Conservation Related BMPs

- Communicate linkages between BMPs, Ecosystem Services, Users, and Watershed Agreement Outcomes
- Integrate ecosystem services information into existing CB tools to compare and communicate multiple benefits of BMP implementation

Lookup Tables of Quantified ES Values per Acre of BMP Implementation

- **Designed to** ۲ work with CAST landcovers
- Does not account for 'change in ES' which would depend on the 'replaced' landcover

LULC CATEGORY	BUMBLEBEE	BICOLOR SWEAT	BLUE SWEAT	ORCHARD
		BEE	BEE	BEE
WATER	0.009	0.003	0.002	0.002
EMERGENT WETLAND	0.024	0.008	0.008	0.008
TREE CANOPY	0.020	0.009	0.009	0.008
SHRUBLAND	0.033	0.015	0.015	0.014
LOW VEG	0.044	0.020	0.015	0.013
BARREN	0.000	0.000	0.000	0.000
STRUCTURE	0.010	0.005	0.004	0.003
IMP SURFACES	0.010	0.005	0.004	0.003
IMP ROADS	0.011	0.005	0.004	0.004
TC OVER STRUCTURE	0.016	0.007	0.006	0.006
TC OVER IMP SURF	0.015	0.007	0.006	0.006
TC OVER IMP ROADS	0.011	0.005	0.005	0.004

Pollinator Index

Bird Species Richness

LAND USE	SPECIES AREA EQUATION:
NATURAL TREE CANOPY	S=68.97*A^0.038
LOW VEGETATION	S=67.09*A^0.042
WETLAND	S=84.59*A^0.029
SHRUBLAND	S=62.57*A^0.043
STRUCTURES	S=64.33*A^0.062
IMPERVIOUS SURFACES	S=63.97*A^0.066
IMPERVIOUS ROADS	S=69.25*A^0.057
TREE CANOPY OVER STRUCUTURE	S=74.04*A^0.055
TREE CANOPY OVER IMPERVIOUS SURFACES	S=71.36*A^0.053
TREE CANOPY OVER IMPERVIOUS ROADS	S=73.32*A^0.050
WATER	S=44.46*A^0.051

Maps of Current ES Value by County

- Designed to work with Geographic Targeting Portal: Benefits to People
- Could be used to identify areas where BMP implementation could help improve current values

Relationships between BMPs and Watershed Agreement Outcomes

 Project also recognized where BMP implementation contributes to Watershed Agreement Outcomes

Relationships between BMPs and Watershed Agreement Outcomes

- Project also

 recognized where
 BMP implementation
 contributes to
 Watershed Agreement
 Outcomes
- And that ecosystem services gained from BMPs could contribute (indirectly or directly) to Outcomes

Example: Wetland BMPs are Connected to Many Outcomes

https://cast.chesapeakebay.net/ecohealth/index

Additional Information

- Journal article and Report
- Scoping & Prioritization Methods
- Relationship Tables
 - What Ecosystem Services could BMPs provide?
 - What User Groups could benefit from BMPs?
 - How do BMPs and the ES they provide contribute to Watershed Agreement Outcomes?
- Example Metrics
- Fact Sheets of ES Quantified for each Focal BMP
- Descriptions of Quantification Methods

Ecosystem Services Information Can Be Useful Whatever Stage you are at in a Decision Process

For More Information

- Rossi, R., C. Bisland, L. Sharpe, E. Trentacoste, B. Williams, and S. Yee. 2022. Identifying and Aligning Ecosystem Services and Beneficiaries Associated with Best Management Practices in Chesapeake Bay Watershed. Environmental Management 69:384-409. <u>https://doi.org/10.1007/s00267-021-01561-z</u>
- Rossi, R.E., C. Bisland, B. Jenkins, V. Van Note, B. Williams, E. Trentacoste, Susan Yee. 2023. Quantifying Ecosystem Services Benefits of Restoration and Conservation Best Management Practices in the Chesapeake Bay Watershed. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC. EPA/600/R-22/170
- Chesapeake Assessment Scenario Tool: <u>https://cast.chesapeakebay.net/</u>
- Watershed Data Dashboard: <u>https://gis.chesapeakebay.net/wip/dashboard/</u>
- Geographic Targeting Portal: <u>https://gis.chesapeakebay.net/targeting/</u>
- Chesapeake Bay Environmental Justice and Equity Dashboard: <u>https://gis.chesapeakebay.net/diversity/dashboard/</u>
- The Eco-Health Relationship Browser: <u>https://cast.chesapeakebay.net/ecohealth/index</u>
- National Ecosystem Goods and Services Classification System: <u>www.epa.gov/eco-research/nescs-plus</u>
- Final Ecosystem Goods and Services Scoping Tool: <u>https://www.epa.gov/eco-research/final-ecosystem-goods-and-services-fegs-scoping-tool</u>
- FEGS Metrics Report: <u>https://www.epa.gov/eco-research/final-ecosystem-goods-and-services-fegs-metrics-report</u>
- Ecosystem Services Models Library: <u>https://esml.epa.gov</u>
- EPA H2O: <u>https://www.epa.gov/water-research/ecosystem-services-scenario-assessment-using-epa-h2o</u>
- EnviroAtlas: <u>https://www.epa.gov/enviroatlas</u>
- InVEST: https://naturalcapitalproject.stanford.edu/software/invest
- I-Tree: <u>https://www.itreetools.org/</u>
- Tetra Tech, Inc. 2017. Estimation of BMP Impact on Chesapeake Bay Program Management Strategies. Fairfax VA.
- Wainger, L., J. Richkus, and M. Barber. 2015. Additional Beneficial Outcomes of Implementing the Chesapeake Bay TMDL: Quantification and Description of Ecosystem Services Not Monetized. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-15/052.