

Deep Learning (AI)

Great at accommodating non-linearities, conditionality, complex interactions

Deep Learning + Remote Sensing

- 1. We want custom maps
- 2. Al interprets multiple 'bands'
- 3. Take advantage of 2D shape

Deep Learning + Remote Sensing

Convolution – learning spatial relations

Image Segmentation with U-Net

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Ronneberger et al. 2015

Solar Mapping

Recall: 90.2%

Precision: 90.1%

IoU: 85.6%

Map all solar arrays in DC, DE, MD, PA, NY, VA, WV

Each year from 2017 - 2021

By 2021: 958 arrays detected* 523.2 km²

Solar mapping

2017 - 2021

State	Area (%)	Rate of increase
DE	9.01 (1.79E-04)	1.40 ± 0.34 E-03
MD	89.05 (3.54E-04)	5.00 ± 0.34 E-03
NY	99.68 (0.82E-04)	1.33 ± 0.48 E-03
PA	37.45 (0.32E-04)	0.61 ± 0.34 E-03
VA	274.17 (2.69E-04)	6.27 ± 0.34 E-03

Land cover transitions

Land cover transitions

Modeling solar development

d_i = solar developed?y_i | d_i = years to development

Impervious surface

Tree cover

Open space

Cultivated

Farm Score

Distance to Transmission

Distance to Road

Population

Income

GAP Status

Slope

Latitude

Modeling solar development

Weibull model for time to event data

$$y_i|d_i \sim Weibull(k_s, \lambda_i)$$

Acceleration \sim state $k_s \sim Gamma(v_{k'}, \theta_k)$

Rate ~ state + covariates

$$\log(\lambda_i) = \log(\alpha_{si}) + \sum_{j=1}^{J} \beta_j x_{ji}$$

(2) parameters:

- 1. Shape (k) acceleration
- 2. Rate (λ) probability

Modeling solar development

Shape
$$(k_s)$$

$$k_s > 1 = accelerating$$

$$k_s = 1 = constant$$

 $k_s < 1 = decelerating$

Future development potential

https://mevans-cic.users.earthengine.app/view/cpksolar

Conclusion

- 1. System for automatically producing updated maps
- 2. Solar arrays in the watershed have avoided 'natural' landcover
- 3. Lower-quality cultivated lands opportunities for restoration?
- 4. Anticipate most and least likely places for future buildout

Questions?

Michael Evans
Senior Data Scientist
mevans@chesapeakeconservancy.org

Cropland: 156 km² (37%)

Solar covariates

Variable	Description	Format	Source	
Slope	Mean slope derived from 10 m digital elevation model	Raster	3DEP National Map (USGS, 2022)	$P(\beta_j) = 0.333$
Year	Year of Sentinel-2 image in which array was first detected	Scalar	Authors	
Road Distance	Distance (m) to nearest local (S1400) or secondary (S1200) road	Vector	USA Roads (USCB, 2021)	$P(\beta_j) = 1.00$
Line Distance	Distance (m) to nearest electric power transmission line	Vector	U.S. Electric Power Transmission Lines (DHS, 2022)	$P(\beta_j) = 0.00$
Gap Status	GAP protected area status code (1 = High, 5 = Low)	Vector	USGS Protected Area Dataset of the U.S.	$P(\beta_j) = 1.00$
Housing	2010 Housing density (km ⁻²) of the census tract	Vector	U.S. Census Bureau	$P(\beta_j) = 0.00$
Income	2010 median household income of the census tract	Vector	U.S. Census Bureau	$P(\beta_j) = 0.04$
Population	2010 population of census tract	Vector	U.S. Census Bureau	$P(\beta_j) = 0.03$
Cultivated	Percentage of pixels identified as cropland in 2016	Raster	Cropland Data Layer (USDA-NASS 2021)	$P(\beta_j) = 1.00$
Tree Cover	Percentage of pixels identified as tree canopy in 2016	Raster	National Land Cover Database (Dewitz & USGS, 2021)	$P(\beta_j) = 0.67$
Impervious	Percentage of pixels identified as impervious surface in 2016	Raster	National Land Cover Database (Dewitz & USGS, 2021)	$P(\beta_j) = 0.00$
Open	Percentage of pixels identified as grassland, shrub, open-developed, or low-intensity developed (i.e., lawns) in 2016	Raster	National Land Cover Database (Dewitz & USGS, 2021)	$P(\beta_j) = 0.191$
Farm Score*	Agricultural soil suitability score (1 = High, 4 = Low)	Raster	SSURGO Farmland Class (NRCS, 2021)	$P(\beta_j) = 0.67$
Latitude	Latitude (m) of array centroid	Scalar	Authors	$P(\beta_i) = 1.00$

$$\log(\alpha_s) + \sum_{j=1}^{J} w_j * \beta_j * X_{ji}$$

$$P(\beta_j) = 1.00$$

 $w_m \sim Bernoulli(0.5)$

$$P(\beta_j) = \frac{1}{N} \sum_{n=1}^{N} w_{j(n)}$$

What is Artificial Intelligence?

 Artificial Intelligence – machines that can solve problems or perform tasks

(e.g. computer chess)

 Machine Learning – machines that learn to make predictions without explicit programming

(e.g. Classification Tree)

 Deep Learning – ML algorithms that use layers of 'neurons'

(e.g. Facial recognition)

Predictors of solar development

Coefficient	$P(w_i)$	$\bar{\beta}_j \pm \sigma$	$P(\beta_i = 0)$
Impervious	0.00	-	-
Open	0.191	0.011 ± 0.375	0.479
Tree Cover	0.667	-1.48 ±0.155	0.00
Cultivated	1.00	0.925 ± 0.246	0.00
Farm Score	0.667	1.41 ±0.208	0.00
$\sqrt{\mathbf{Slope}}$	0.333	-2.95 ± 0.283	0.00
log(GAP Status)	1.00	-1.51 ±0.355	0.00
log(Line Distance)	0.00	-	-
log(Road Distance)	1.00	0.919 ± 0.188	0.00
log(Population)	0.035	0.054 ± 0.15	0.629
Income	0.036	0.031 ± 0.189	0.472
Latitude	1.00	-2.24 ±0.565	0.00

$$\log(\alpha_s) + \sum_{j=1}^J w_j * \beta_j * X_{ji}$$

$$w_m \sim Bernoulli(0.5)$$

$$P(\beta_j) = \frac{1}{N} \sum_{n=1}^{N} w_{j(n)}$$

Image Augmentation

Original

Rotate 90°

Rotate 180°

Rotate 270°

Brightness -5% Contrast -5%

Brightness +5% Contrast -5%

Brightness -5% Contrast +5%

Brightness +5% Contrast +5%

Model Training Workflow

