

Predicting solar growth in the Chesapeake

Dr. Michael Evans Senior Data Scientist

Solar growth in the Chesapeake

- 1. Map solar arrays with Al
- 2. Quantify land use transitions
 - 3. Predicting future trends

Deep Learning (AI)

Great at accommodating non-linearities, conditionality, complex interactions

Deep Learning + Remote Sensing

- 1. We want custom maps
- 2. Al interprets multiple 'bands'
- 3. Take advantage of 2D shape

Deep Learning + Remote Sensing

Convolution – learning spatial relations

Image Segmentation with U-Net

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Ronneberger et al. 2015

Solar Mapping

Recall: 90.2% Precision: 90.1% IoU: 85.6%

Map all solar arrays in DC, DE, MD, PA, NY, VA, WV Each year from 2017 - 2021

> By 2021: 958 arrays detected* 523.2 km²

Solar mapping

2017 - 2021

State	Area (%)	Rate of increase
DE	9.01 (1.79E-04)	$1.40\pm0.34\text{E-}03$
MD	89.05 (3.54E-04)	$5.00 \pm 0.34 \text{E-}03$
NY	99.68 (0.82E-04)	$1.33\pm0.48\text{E-}03$
PA	37.45 (0.32E-04)	$0.61\pm0.34\text{E-}03$
VA	274.17 (2.69E-04)	$6.27\pm0.34\text{E-03}$

Land cover transitions

Land cover transitions

			-	Effec	ct size (km ²)			
			-20	-10	0 10	20		
	Dev., High	0.13	0.26	0.8	0.33	-0.2	1.08	
	Dev., Med	0.98	5.64	1.32	3.83	-2.58	9.11	Huma
	Dev., Low	0.69	11.19	0.86	2.82	-5.71	10.09	Human modified
	Dev., Open	0.32	2.66	-0.19	3.42	-7_59	-1.68	ified
	Barren	-0.02	0.61	1.01	0.88	-0.28	2.01	
	Crops	1.62	19.59		10.16	73.99	120.64	
Land cover class	Pasture	-0.07	3.44	0.81	23.84	-4.01	22.88	Cultivated
cover	Grass	0.24	0.25	0.34	1.39	20.21	23.99	ited
Lanc	Forest, Conif.	-0.2	-1.34	-0.49	-4.27	18.72	17.23	
	Shrub	-0.03	0.08	-0.34	0.67	3.89	5.45	
	Forest, Mix	-0.24	-4.27	-3.08	-6.6	-24.54	-37.82	
	Forest, Decid.	-0.3	-13.14	-14.19	-17.64	-46.77	-111.88	Natural
	Wetland, Herb	-1.09	-6.03	-0.52	-5.48	-8.06	-18	Iral
N	Wetland, Wood	-0.28	-1.82	-0.07	-0.13	-1.22	-2.39	
	Water	-1.76	-17.13	-0.78	-13.21	-15.9	-40.74	
		DE	м́р	PA Sta	NY te	VA	Study area	

Modeling solar development

Weibull model for time to event data

$$y_i | d_i \sim Weibull(k_s, \lambda_i)$$

Acceleration ~ state $k_s \sim Gamma(v_{k'} \theta_k)$

(2) parameters:

- 1. Shape (k) acceleration
- 2. Rate (λ) probability

Modeling solar development

Shape (k_s)

 $k_s > 1 = accelerating$

 $k_s = 1 = constant$ $k_s < 1 = decelerating$

Future development potential

https://mevans-cic.users.earthengine.app/view/cpksolar

- 2. Solar arrays in the watershed have avoided 'natural' landcover
- 3. Lower-quality cultivated lands opportunities for restoration?
- 4. Anticipate most and least likely places for future buildout

Questions?

Michael Evans Senior Data Scientist mevans@chesapeakeconservancy.org

Wetland, Wood-	-0.4	-1.91	-0.03	0.08	-1.5	-2.22
Wetland, Herb-	-1.15	-6.24	-0.44	-5.35	-8.85	-18.34
Water -	-1.72	-16.93	-0.78	-12.2	-15.83	-39.79
Shrub -	-0.02	0.26	-0.22	0.98	3.54	6.34
Pasture -	-0.06	3.12	0.53	23.82	-6.99	20.07
Grass -	0.25	0.36	0.44	1.65	21.17	25.35
se Forest, Decid	-0.23	-14.34	-15.83	-23.01	-50.81	-128.31
Forest, Decid G Forest, Conif E Fores, Mix -	-0.18	-1.1	-0.33	-5.14	21.02	17.66
Ż Fores, Mix-	-0.24	-4.72	-2.83	-6.07	-25.19	-36.34
Dev., Open-	0.4	3.57	0.56	4.98	-4.15	5.96
Dev., Med-	1.07	6.34	1.54	4.49	-1.42	
Dev., Low-	0.82	12.04	1.22		-3.79	
Dev., High-	0.17	0.6	0.92	0.65	0.34	2.48
Crops -	1.3	18.38	14.23	10.23	72.85	118.37
Barren -	-0.02	0.58	1.01	0.89	-0.38	1.98
_	DE	MD	PA	ŃY	VA	CBW
			St	ate		

Cropland: 156 km² (37%)

State

Solar covariates

Variable	Description	Format	Source	
Slope	Mean slope derived from 10 m digital elevation model	Raster	3DEP National Map (USGS, 2022)	$P(\beta_j) = 0.333$
Year	Year of Sentinel-2 image in which array was first detected	Scalar	Authors	
Road Distance	Distance (m) to nearest local (S1400) or secondary (S1200) road	Vector	USA Roads (USCB, 2021)	$P(\beta_j) = 1.00$
Line Distance	Distance (m) to nearest electric power transmission line	Vector	U.S. Electric Power Transmission Lines (DHS, 2022)	$P(\beta_j) = 0.00$
Gap Status	GAP protected area status code (1 = High, 5 = Low)	Vector	USGS Protected Area Dataset of the U.S.	$P(\beta_j) = 1.00$
Housing	2010 Housing density (km ⁻²) of the census tract	Vector	U.S. Census Bureau	$P(\beta_j) = 0.00$
Income	2010 median household income of the census tract	Vector	U.S. Census Bureau	$P(\beta_j) = 0.04$
Population	2010 population of census tract	Vector	U.S. Census Bureau	$P(\beta_i) = 0.03$
Cultivated	Percentage of pixels identified as cropland in 2016	Raster	Cropland Data Layer (USDA-NASS 2021)	$P(\beta_j) = 1.00$
Tree Cover	Percentage of pixels identified as tree canopy in 2016	Raster	National Land Cover Database (Dewitz & USGS, 2021)	$P(\beta_j) = 0.67$
Impervious	Percentage of pixels identified as impervious surface in 2016	Raster	National Land Cover Database (Dewitz & USGS, 2021)	$P(\beta_j) = 0.00$
Open	Percentage of pixels identified as grassland, shrub, open-developed, or low-intensity developed (i.e., lawns) in 2016	Raster	National Land Cover Database (Dewitz & USGS, 2021)	$P(\beta_j) = 0.191$
Farm Score*	Agricultural soil suitability score (1 = High, 4 = Low)	Raster	SSURGO Farmland Class (NRCS, 2021)	$P(\beta_j) = 0.67$
Latitude	Latitude (m) of array centroid	Scalar	Authors	$P(\beta_i) = 1.00$

$$\log(\alpha_s) + \sum_{j=1}^J w_j * \beta_j * X_{ji}$$

$$w_m \sim Bernoulli(0.5)$$

$$\mathsf{P}(\beta_j) = \frac{1}{N} \sum_{n=1}^{N} w_{j(n)}$$

What is Artificial Intelligence?

 Artificial Intelligence – machines that can solve problems or perform tasks

(e.g. computer chess)

 Machine Learning – machines that learn to make predictions without explicit programming

(e.g. Classification Tree)

• Deep Learning – ML algorithms that use layers of 'neurons'

(e.g. Facial recognition)

Predictors of solar development

Coefficient	$P(w_i)$	$ar{eta}_j~\pm~\sigma$	$P(\beta_i = 0)$
Impervious	0.00	-	-
Open	0.191	0.011 ±0.375	0.479
Tree Cover	0.667	-1.48 ±0.155	0.00
Cultivated	1.00	0.925 ± 0.246	0.00
Farm Score	0.667	1.41 ± 0.208	0.00
√Slope	0.333	-2.95 ±0.283	0.00
log(GAP Status)	1.00	-1.51 ±0.355	0.00
log(Line Distance)	0.00	-	-
log(Road Distance)	1.00	0.919 ±0.188	0.00
log(Population)	0.035	0.054 ± 0.15	0.629
Income	0.036	0.031 ±0.189	0.472
Latitude	1.00	-2.24 ±0.565	0.00

$$\log(\alpha_s) + \sum_{j=1}^J w_j * \beta_j * X_{ji}$$

 $w_m \sim Bernoulli(0.5)$

$$\mathsf{P}(\beta_j) = \frac{1}{N} \sum_{n=1}^{N} w_{j(n)}$$

Image Augmentation

Original

Rotate 90°

Rotate 180°

Rotate 270°

Brightness -5% Contrast -5%

Brightness +5% Contrast -5%

Brightness -5% Contrast +5%

Brightness +5% Contrast +5%

