

https://ian.umces.edu/media-library/

PFAS Contamination in the Chesapeake Bay Food Web

(PFAS == per- and polyfluoroalkyl organic compounds)

Issues:

- PFAS have been accumulating in the Bay environment since the 1940's
 - Persist over long time periods degrade slowly
 - Bioaccumulate in muscle tissues
 - Human effects dire:
 - Increased infant mortality
 - Birth defects, including skeletal alteration
 - Neurodevelopmental effects
 - Reduced immune function
 - Cancer
- Testing is difficult, expensive
- Monitoring needs to be spatial (contaminated animals move)
- Consumption advisories likely will require multiple target species

Pilot Study:

Focuses on the development of a cost-effective approach to estimate PFAS concentrations spatially for multiple focal species simultaneously

NIH/Morgan State University Pilot Study:

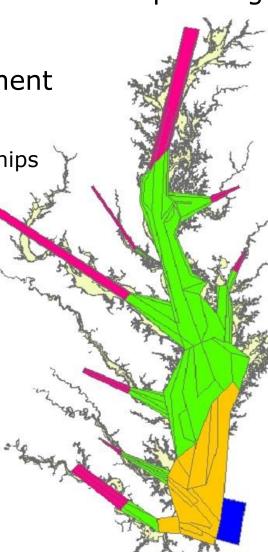
Estimating Toxic PFAS Concentrations in Seafood Spatially in the Chesapeake Bay

Aim 1

Predict relative concentrations of PFAS contamination spatially for Chesapeake Bay species.

Aim 2

Test the predictive ability of the model as proof of concept of its use to estimate and map relative concentrations of contaminants.


The Chesapeake Atlantis Model (CAM)

The Chesapeake Atlantis Model A Holistic Ecosystem Modeling Approach Incorporating:

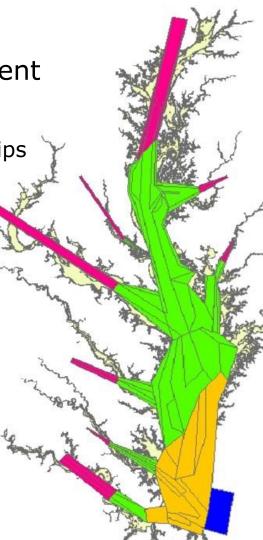
Biological environment

Primary production
Trophic interactions
Recruitment relationships
Age structure
Size structure
Life History
Refuge Habitat

Fisheries ✓Multiple sectors ✓Gears ✓Seasons ✓Spatially explicit

Physical environment

- ✓Geology
- ✓Chemistry
- ✓Circulation & currents
- ✓Temperature
- ✓Salinity
- ✓ Water clarity
- ✓ Climate variability
- Nutrient Inputs
- ✓ Currency is Nitrogen
- ✓Oxygen
- ✓Silica
- ✓3 forms of detritus
- ✓Bacteria-mediated recycling


The Chesapeake Atlantis Model A Holistic Ecosystem Modeling Approach Incorporating:

Biological environment <p

✓ Recruitment relationships
✓ Age structure
✓ Size structure
✓ Life History
✓ Refuge Habitat

Fisheries ✓Multiple sectors ✓Gears ✓Seasons ✓Spatially explicit

Ecotoxicolgy ✓ Biomagnification

- Physical environment
- ✓Geology
- ✓Chemistry
- ✓Circulation & currents
- ✓Temperature
- ✓Salinity
- ✓ Water clarity
- ✓ Climate variability
- Nutrient Inputs
- ✓Currency is Nitrogen
- ✓Oxygen
- ✓Silica
- ✓3 forms of detritus
- ✓Bacteria-mediated recycling

Ecological Groups: Federal fisheries, Forage, Protected, Habitat

Finfish

- Alosines (Amer.Shad, Hickory Shad, Alewife & Herring)
- Atlantic Croaker
- Bay anchovy
- Black drum
- Bluefish
- Butterfish, harvestfish ("Jellivores")
- Catfish
- Gizzard shad

- Littoral forage fish: silversides, mummichog - Menhaden
- Striped bass
- Summer flounder
- Other flatfish (hogchoker, tonguefish, window pane, winter flounder)
- Panfish:
 - Euryhaline: Spot, silver perch; FW to 10ppt: yellow perch, bluegill
- Reef assoc. fish: spadefish, tautog, black seabass, toadfish
- Spotted hake, lizard fish, northern searobin
- Weakfish
- White perch

Elasmobranchs

- Cownose ray
- Dogfish, smooth
- Dogfish, spiny
- Sandbar shark

Birds

- Bald Eagle
- Piscivorous birds (osprey, great blue heron, brown pelican, cormorant)
- Benthic predators (diving ducks)
- Herbivorous seabirds (mallard, redhead, Canada goose, & swans)

Mammals

- Bottlenose dolphin

Reptiles

- Diamond-back Terrapin
- Seaturtles

- Benthic feeders: (B-IBI "CO"+"IN") ... - Benthic predators: (B-IBI "P") ...,
 - Benthic suspension feeders: (B-IBI "SU")
 - Blue crab YOY

Invertebrates

- Blue crab adult
- ⁻ Brief squid
- Macoma clams: (B-IBI)
- Meiofauna: copepods, nematodes, ...,
- Oysters

Primary Producers

Benthic microalgae ("microphytobenthos" benthic diatoms, benthic cyalobacteria & flagellates)

"Grasses:"

SAV – type varies with salinity

Marsh grass

- Phytoplankton Large: diatoms & silicoflagellates (2-2004)
- Phytoplankton Small: nannoplankton, ultraplankton,
- aka "picoplankton" or "picoalgae" (0.2-2um),
- cyanobacteria included (2um)
- Dinoflagellates (mixotrophs) (5-2,000um)

ZooPlankton

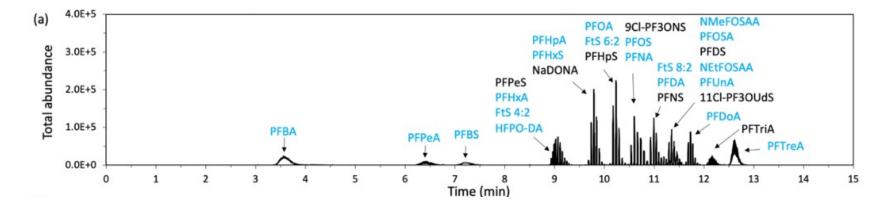
- Ctenophores
- Sea nettles
- Microzooplankton (.02-.2mm): rotifers, ciliates, copepod nauplii
- Mesozooplankton (.2-20mm): copepods, etc.

Detritus

- Carrion
- Carrion (sediment)
- Labile
- Labile (sediment)
- Refractory
- Refractory (sediment)

Bacteria (.2-2 um [.002 mm] - feed microzooplankton food chain)

- Benthic Bacteria (sediment)
- Pelagic Bacteria: (free-living)

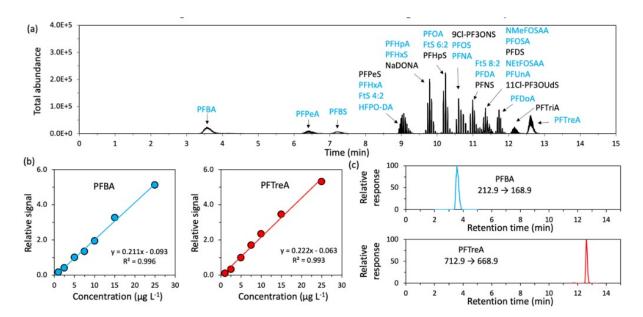

Over the next Year:

- 1. Parameterize CAM to estimate biomagnified concentrations of PFAS
- 2. Run the model
- 3. Choose two tributaries for field testing
- 4. Collect Blue Crabs in the test tributaries

- 5. Quantify actual PFAS levels (29) in tissues
- 6. Tune the model for Blue Crab

Thank You!

Questions: Thomas.ihde@morgan.edu

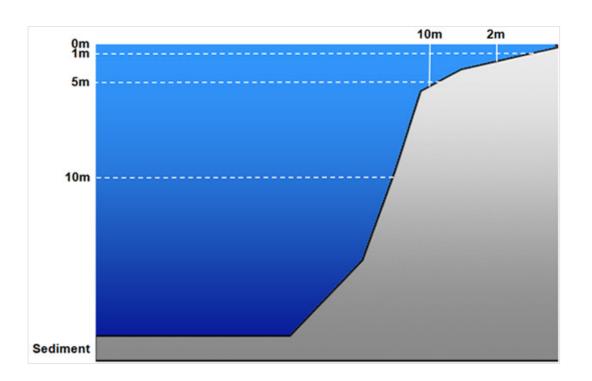

RCMI Pilot Studies: Award Number 5U54MD013376

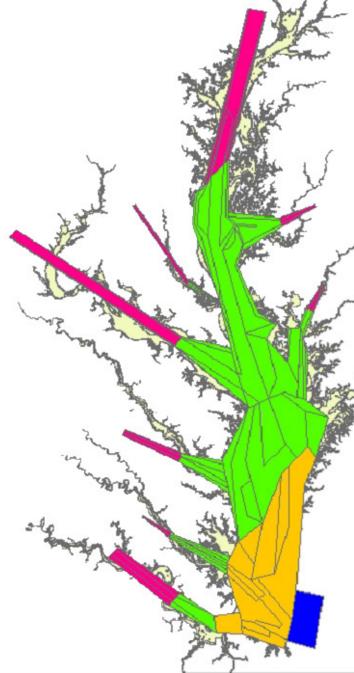
RISE Scholars Program: NIGMS RISE 5 R25 GM058904

EXTRA SLIDES

Class (#)	PFAS molecule (acronym)
Perfluorocarboxylic	perfluorobutanoic acid (PFBA)*; perfluoropentanoic acid (PFPeA)*;
acids (11)	perfluorohexanoic acid (PFHxA)*; perfluoroheptanoic acid (PFHpA)*;
	perfluorooctanoic acid (PFOA)*; perfluorononanoic acid (PFNA)*;
	perfluorodecanoic acid (PFDA)*; perfluoroundecanoic acid (PFUnA)*;
	perfluorododecanoic acid (PFDoA)*; perfluorotridecanoic acid (PFTriA);
	perfluorotetradecanoic acid (PFTreA)*
Perfluorosulfonic	perfluorobutanesulfonic acid (PFBS)*; perfluoropentanesulfonic acid (PFPeS);
acids (7)	perfluorohexanesulfonic acid (PFHxS)*; perfluoroheptanesulfonic acid (PFHpS);
23034	perfluorooctanesulfonic acid (PFOS)*; perfluorononanesulfonic acid (PFNS);
	perfluorodecanesulfonic acid (PFDS)
Fluorotelomers (3)	fluorotelomer sulfonic acid 4:2 (FtS 4:2)*; FtS 6:2*; FtS 8:2*
	4,8-dioxa-3H-perfluorononanoic acid (ADONA); 2-(N-methylperfluorooctane-
	sulfonamido)acetic acid (NMeFOSAA)*; 2-(N-ethylperfluorooctane-
	sulfonamido)acetic acid (NEtFOSAA)*; hexafluoropropylene oxide dimer acid
	(HFPO-DA, also known as GenX)*; perfluoro(2-ethoxyethane)sulfonic acid
	(PFEESA); perfluorooctanesulfonamide (PFOSA)*; 9-chlorohexadecafluoro-3-
	oxanonane-1-sulfonate (9Cl-PF3ONS); 11-chloroeicosafluoro-3-oxaundecane-1-
	sulfonate (11Cl-PF3OUdS)

Table 1. PFAS to be investigated in this project. Note, * indicates mass-labeled PFAS (MPFAS).

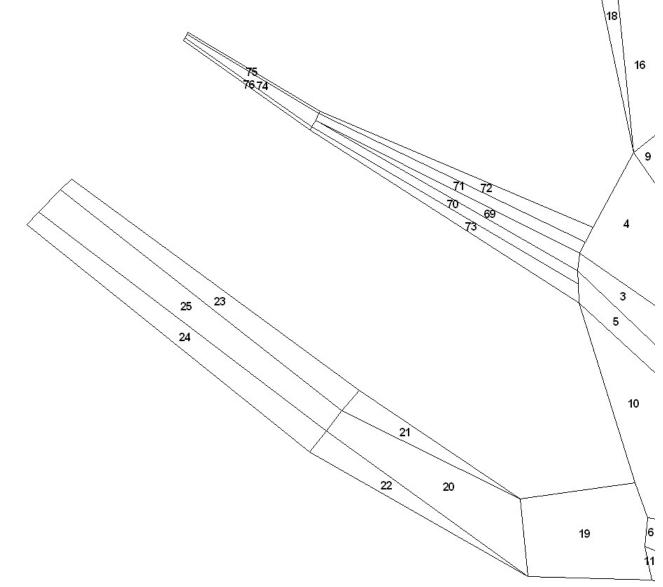



Figure 2. (a) The total ion current for a solution containing 10 μ g L⁻¹ of 28 PFAS (black and blue labels) and 5 μ g L⁻¹ of 23 mass-labeled internal standards (blue labels); example (b) calibration curves for the 1-25 μ g L⁻¹ range and (c) chromatograms with quantitative ion transitions for PFBA and PFTreA.

The Chesapeake Atlantis Model

Design

CAM Design: 3-Dimensional Box Model:



Salinity

CAM: River Box Structure

