Improve the Understanding & Coordination of Science Activities for PFAS in the Chesapeake Watershed May 17, 2022

PFAS in Surface Water, Sediment and Fish from the Delaware River Basin

Ron MacGillivray, Ph.D. Senior Environmental Toxicologist ron.macgillivray@drbc.gov

Presented to Chesapeake Bay Program's (CBP) Scientific and Technical Advisory Committee (STAC)

www.itrcweb.org

Delaware River Basin Commission

The 1937 Philadelphia Record editorial page cartoon depicted polluted Delaware River A unified approach to managing, protecting and improving shared water resources with five equal members:

Delaware

New Jersey

Pennsylvania

New York

Federal Government

River of the Year for 2020 "The Delaware River is a national success story," Bob Irvin, President and CEO of American Rivers

Why are PFAS of Concern?

Occurrence, Persistence, Bioaccumulation and Toxicity

What are the risks to source water, fish consumption, maintenance and propagation of fish, other aquatic life, and aquatic dependent wildlife?

Effects on Human Health

Association with liver damage, increased cholesterol, thyroid disease, decreased response to vaccines, asthma, decreased fertility and birth weight, pregnancy–induced hypertension

Effects on Aquatic Life

- Impaired survival, growth, and reproduction, other sublethal affects observed.
- Direct exposure (water column)
- Indirect exposure (bioconcentrated by producers and bioaccumulated by consumers in higher trophic levels)

Delaware River Sampling Sites and Years

2021 concurrent sampling sites

Analytical Method

* Draft EPA Method 1633 equivalent

- * 40 PFAS are currently analyzed in fish fillet (2g wet), surface water (1L) and surficial sediment (5g dry) by SGS AXYS Analytical Services Ltd. (Sidney, B.C., Canada).
- * Analytical methods included Solid Phase Extraction (SPE) with weak anion exchange sorbent cartridges and LC-MS/MS with isotope dilution.

Longer Chain PFAS in Mainstem of Delaware River

Delaware River Basin Commission

• PENNSYLVANIA • NEW YORK UNITED STATES OF AMERICA

DELAWARE

NEW

RM 12.9 and 71 NA

Temporal Trends in Fish Fillet - PFNA

Delaware River Basin Commission

.

NEW

DELAWARE

Temporal Trends in Fish Fillet - PFOS

Delaware River Summary

- In main stem, PFAS are below regional and national guidelines in areas designated as drinking water sources.
- Sediment contain long-chain PFAS at low concentrations.
- Significant decreases in PFNA and PFUnA concentrations in fish over the sample period.
 - PFOS concentrations slowly decreasing.
- Levels of PFAS in fish indicate further evaluation of risk to human health and aquatic dependent wildlife is warranted.
 - Legacy and novel PFAS are of concern.

Ron MacGillivray, Ph.D. ron.macgillivray@drbc.gov https://www.nj.gov/drbc/programs/quality/cecs.html

MacGillivray, A R (2021) Temporal trends of PFAS in Delaware River Fish, USA. Integrated Environmental Assessment and Management. 17(2) 411-421. <u>https://setac.onlinelibrary.wiley.com/doi/10.1002/ieam.4342</u>

Managing, Protecting and Improving Our Shared Water Resources since 1961

Project Funding EPA, PACZM, and NFWF DWCF