Tissue talk: challenges and considerations when
designing PFAS measurement in fish and wildlife tissue
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Overview

* What tissues should be evaluated?

* What species should be included in monitoring?

* What compounds are of interest/importance?

* What analysis/preparation methods are used for tissue?




Aquatic ecosystems are the final sink for most PFAS
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Tissue monitoring is vital because water patterns # tissue patterns

Removed — a figure of unpublished

data. Figure showed that compound

distribution in water does not match

the compound distribution observed
in fish muscle or liver.

Robuck unpublished data — no photos or sharing please ©



Species selection must consider the unique physicochemical behavior of PFAS

- Amphiphilic

- Preferentially partition to protein, not .

fat

- Many unique chemistries, all PFAS o1
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(A) Lipophilic Organohalogens
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(B) Perfluorinated Acids

ng-g~' protein

2 3 4 5 601

Trophic Level

FIGURE 2. Chemical concentrations in organisms of the Arctic marine food web versus trophic level (TL) for (a) lipophilic
organohalogens (ng-g~"' lipid equivalent) and (b) perfluorinated acids (ng-g~" protein). Data are geometric means + 1 SD. Data for E.
Hudson Bay sculpin and polar bears are from references 4, 7, and 37. Solid lines represent log-linear regression of Cz—TL
relationship over the entire food web. Dashed line represents those regressions using only data for the piscivorous food web.



Air-breathing organisms are particularly vulnerable to bioaccumulation

(B) Perfluorinated Acids
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FIGURE 2. Chemical concentrations in organisms of the Arctic marine food web versus trophic level (TL) for (a) lipophilic
organohalogens (ng-g ' lipid equivalent) and (b) perfluorinated acids (ng-g~' protein). Data are geometric means + 1 SD. Data for E.
Hudson Bay sculpin and polar bears are from references 4, 7, and 37. Solid lines represent log-linear regression of Cz—TL
relationship over the entire food web. Dashed line represents those regressions using only data for the piscivorous food web.

See also: Pendland et al. 2020, ES&T
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Some considerations for species/tissue selection

Species selection:

. Reassess species used for POPs, e.g. SCCWRP EC monitoring plan
. Migratory status of species

. Compartment of interest/importance: benthic vs pelagic

. Respiratory matrix

. Impacts of salinity on bioaccumulation (e.g. mussels)

. Commercial importance

. Food web length/complexity

~NOoO g, WODN -

Tissue selection:
1. Ease/ethics of access: invasive/lethal vs opportunistic vs catch and release
2. Intent of data use: Source tracking? Ecological integrity”? Human health?

But overall...some data is better than nothing and can inform future refinement of monitoring. ..



Tissue remains a continued analytical challenge

- Few validated methods exist for tissue
- USA: EPA draft method 1633 for 40 compounds
- EU: HBM4EU
- ILS established two NIST references for fish fillet in 2012
- SERDP/DOD rely on performance reporting given lack of
standardized methods

- In literature, we see:
- Solvent extraction with Oasis cartridge clean-up (WAX or HLB),
- lon-pairing extraction using MTBE (IPE),
- Protein precipitation with or without dispersive carbon clean-up



What compounds?
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Some considerations for compound/analysis selection

Compound selection:

1. PFAAs = most data, highest priority for regulation, terminal endpoints of
many precursors, ability to measure quantitatively in targeted analysis

2. PFAAs are tip of the iceberg, e.g. precursors, polyethers, chlorinated, etc.

Analysis selection:

1. Performance needs

2. Targeted analysis: most widely used, easy to set up/contract, misses any
PFAS not included in method, many matrix issues

3. TOP = immature for biological tissues (IMHO), good screening tool

4. NTA = time-consuming, requires specialized skillset/instrumentation,
provides very rich dataset

5. CIC = detection limit issues, requires specialized skillset/instrumentation,
good bulk evaluation tool, very powerful paired with NTA or targeted
analyses



Different methods vary in their extraction of different classes of PFAS

Analytical and Bioanalytical Chemistry (2021) 413:865-876
https//doi.org/10.1007/500216-020-03041-5
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Comparison of extraction methods for per- and polyfluoroalkyl
substances (PFAS) in human serum and placenta samples—insights
into extractable organic fluorine (EOF)

Andreas-Marius Kaiser "2 « Rudolf Aro> « Anna Kirrman? . Stefan Weiss ' « Christina Hartmann' - Maria Uhl' .
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See also: Jahnke and Berger 2009, Valsecchi et al. 2013, Nilsson et al. 2021 14
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Fig. 2 The recoveries in % are based on the comparison of the sample
peak area with the calibration standard peak area. For all substances and
methods n =3, except for PFUnDA, PFOcDA, PFNS, PFECHS,

& P & & & & 2 8 9
ét?' (\d‘ 0&? (\(? (\\)(. «OL .\ q\ <¢, . & d & 2 & ibsv- X & 16\\* mbqv-
LA o & 9 & @ g $ e 8 g7 8

MeFOSE, EtFOSE, PFHxPA, 6:8 PFPiA, 8:8 PFPiA, and 6:2 Cl-
PFESA for the ion-pair method which were n=2
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Materials and lab technique also impact performance
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Some considerations for preparation selection

When selecting a method:

1.
2.
3.

4.

~N O

Analytical plans: LC-MS/MS? HRMS? GC? EOF or TOP?

Time: cartridge-based methods reduce sample throughput

Cost: variable cost of solvents, standards, consumables for each
method

Expertise: skilled lab hands needed for all methods, some more than
others

. Accessibility: certain workflows require more equipment, reduces

number of labs capable of analysis

. Sustainability: more steps = more single-use plastics
. Data interpretation: different methods = different data artifacts. \What

scale of data comparison meets monitoring needs?

. Future needs: archival capacity, amount of tissue required
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