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Seagrass extent and absolute abundance can be 
mapped with high fidelity from aircraft carrying 

hyperspectral sensors

Hill, V.J., R.C. Zimmerman, W.P. Bissett, 
H. Dierssen, and D.D. Kohler. 2014. 
Estuaries and Coasts 37: 1467-1489.

Dierssen, H., R. Zimmerman, R. Leathers, T. Downes, 
and C. Davis. 2003. Limnol. Oceangr. 48: 444-455.
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Bissett, W., R. Zimmerman, V. Hill, and D. Kohler. 
2011. Saint Josephs Bay Aquatic Preserve Imaging 
Spectroscopy: Florida Department of Environmental 
Protection.  Office of Coastal and Aquatic Managed 
Areas.  Contract No RM055.
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And from satellite-borne multispectral 
sensors with high spatial resolution
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Above-ground biomass

Carbon (g m-2)

Below-ground biomass

Carbon (g m-2)

St. George Sound, FL

And the LAI maps can be used 
to derive seagrass carbon using 
known values of
• Leaf Area:Leaf Mass
• Shoot:Root Ratios



The Need
• Maps of SAV distribution and 

abundance are critical for:
• Management

• estuarine/coastal water quality 

VIMS SAV Monitoring Program
https://www.vims.edu/research/units/programs/sav/access/maps/index.php



The Need
• Maps of SAV distribution and 

abundance are critical for:
• Management

• estuarine/coastal water quality 
• natural resources

VIMS SAV Monitoring Program Annual Report 2020
https://www.vims.edu/research/units/programs/sav/reports/2020/exec_sum.php



The Need
• Maps of SAV distribution and 

abundance are critical for:
• Management

• estuarine/coastal water quality 
• natural resources

• Ecological Modeling & Forecasting
• Climate warming
• Ocean acidification

Fig. 7 from Zimmerman, R., V. Hill, and C. Gallegos. 2015. 
Predicting effects of ocean warming, acidification and water quality 
on Chesapeake region eelgrass. Limnol. Oceanogr. 60: 1781-1804.



The Need
• Maps of SAV distribution and 

abundance are critical for
• Management

• estuarine/coastal water quality 
• natural resources

• Ecological Modeling & Forecasting
• Climate warming
• Ocean acidification

• Blue Carbon Estimates
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Figure 8.  Maps of above-ground carbon (A & C) and below-ground carbon (B & D) for St. 
George Sound and  

Zimmerman, R., V. Hill, J. Li, B. Schaeffer. 2019. Quantification of Blue Carbon Burial in 
Seagrass Ecosystems and the Impact of Projected Climate Change. Annual Technical 
Progress Report 2.  NASA Grant/Cooperative Agreement No. NNX17AH01G
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Chesapeake Bay
Annual SAV Monitoring 

Program
1974 to Present

Landry, B., P. Tango, C. Bisland, M. 
Coffer, W. Dennison, V. Hill, C. 
Lebrasse, J. Li., R. Orth, C. Patrick, B. 
Schaeffer, P. Witman, D. Wilcox, and 
R. Zimmerman. 2021. Exploring 
Satellite Image Integration for the 
Chesapeake Bay SAV Monitoring 
Program –A STAC Workshop, 1-45. 
Edgewater Maryland: STAC.



The Problem

• Maintenance of aerial survey program for Chesapeake Bay is under 
pressure from
• Aircraft costs and scheduling
• Labor costs for manual photointerpretation
• Increasingly limited access to restricted airspace

• Maps of relative abundance are not easily translated into absolute 
units of mass required for biogeochemical models or Blue Carbon 
estimates



The Opportunity
• Can satellite remote sensing replace or at least augment aerial 

surveys?
• Reduce aircraft costs
• Access airspace-restricted locations

• Can machine learning algorithms be used to automate the 
classification process?
• Reduce costs & time required to produce SAV maps

• Can we generate more quantitative abundance data?
• Biogeochemical models and Blue Carbon require absolute abundances (mass 

per area), not relative abundance (% cover)



• How to integrate SAV maps derived from pixel-based classification 
algorithms with those historically derived from polygons? 
• Pixel-based maps likely to return fewer hectares of SAV cover than 

polygon-based maps
• Areas of low cover (<50%) are mostly sand, even though they contribute to 

the calculation of SAV area based on polygons
• Pixel-based classifications omit sand pixels from the SAV area calculations

• Integration/resolution of these different approaches needs to be 
explored

An Important Challenge



Orbiting sensors, capabilities and availability
Sensor Operator Bands

Nadir Spatial 
Resolution (m)

Operational 
Status

View 
Angle Swath (km) Coverage Repeat Cycle

Radiometric 
Calibration

Atmospheric 
Correction Data Availability

Archive 
Available

CZCS NASA 4 Vis, 2 NIR 1 Km 1978-1986 0 to 20° 1566 Global 16 days Provided Provided Public Yes
Sea_WiFS NASA 6 Vis, 2 Nir 1 Km 1997 - 2010 0 to 20° 2806 Global 16 days Provided Provided Public Yes

MODIS NASA 7 Vis, 2 NIR 1 Km 2002 - present 0 to 65° 2330 Global 16 days Provided Provided Public Yes

VIIRS NASA/NOAA 7 Vis, 8 NIR 
5 MIR 750 m 2011 - present 0 - 113° 3060 Global 16 days Provided Provided Public Yes

LandSat NASA/USGS 4 Vis 1 NIR 30 multi               
15 pan L5+ since 1984 Nadir 185 Global 16 Days User-applied Use-applied Public Yes

Sentinel ESA 4 Vis, 3 Red 
Edge, 3 NIR 10 S-2A in 2015 Nadir 290 Global 10 Days Provided Provided Public Yes

WorldView 2,3 Maxar
5 Vis, 1 Red 
Edge 2 NIR, 

Pan

WV2: 1.8 Multi   
0.46 Pan          

WV3: 1.24 Multi  
0.31 Pan

WV2: Since 
2009             

WV3: Since 
2014

Taskable WV2: 16.4      
WV3:13.1

Requires 
Tasking

Infrequent, 
requires 
tasking

User-applied User-applied

Propreitary          
Free through NGA 

for limited academic 
research

Yes

Dove     
PlanetScope Planet 3 Vis, 1 Red 

Edge, 1 NIR 3.9 Since 2017 Nadir 5
Global Land 
Mass, Daily 

Image
Daily Provided Provided

Propreitary          
Free through NGA 

and Planet for 
academic research

Yes



SeaWiFS, 
MODIS & VIIRS
• Global coverage
• Highly quality data
• Radiometrically calibrated
• Atmospherically corrected
• Geo-referenced

• Data well curated and 
available to the public

Susquehanna Flats



SeaWiFS, 
MODIS & VIIRS

Susquehanna Flats• Global coverage
• Highly quality data
• Radiometrically calibrated
• Atmospherically corrected
• Geo-referenced

• Data well curated and 
available to the public
• Coarse spatial resolution 

(1 Km) limits utility to a 
few very large 
areas/meadows



Landsat and 
Sentinel

• Provide time 
series potential 
going back to at 
least 1990
• 10 to 30 m 

enables mapping 
of relatively large 
meadows/systems

Susquehanna Flats



Landsat and 
Sentinel

• Provide time 
series potential 
going back to at 
least 1990
• 10 to 30 m 

enables mapping 
of relatively large 
meadows/systems
• Not good at 

mapping small 
SAV meadows

Goodwin Islands



WorldView 2 & 3
• Provide high resolution data capable of 

quantifying smaller SAV patches
• excellent spatial resolution (1 – 3 m)
• 8 color bands

• But image acquisition requires tasking/scheduling
• Logistically challenging
• Subject to priority competition with other customers

• E.g., DOD

• Radiometric calibration and atmospheric 
correction of each scene must be performed by 
the user
• Maxar restricts public sharing/use of the imagery

Bissett, W., R. Zimmerman, V. Hill, and D. Kohler. 
2011. Saint Josephs Bay Aquatic Preserve Imaging 
Spectroscopy: Florida Department of Environmental 
Protection.  Office of Coastal and Aquatic Managed 
Areas.  Contract No RM055.



Dove PlanetScope Cubesat Constellation

Schaeffer & Whitman et al (In Prep) Marine Pollution Bulletin. 
This work was supported by the NASA Commercial Smallsat Data Acquisition.

• Daily global coverage eliminates tasking 
logistics

• 4 m spatial resolution, RGB + NIR
• Radiometrically calibrated and 

atmospherically corrected images 
simplify the processing

• The on-line catalog is easy to use
• Proprietary requirements less restrictive 

Maxar
• Higher spatial resolution and 8-band 

color systems now on orbit



Schaeffer & Whitman et al (In Prep) Marine Pollution Bulletin. 
This work was supported by the NASA Commercial Smallsat Data Acquisition.

• Dove PlanetScope sensors are nadir-viewing
• But sunglint at 35° N appears manageable 

assuming a normalized sunglint threshold similar to MODIS (0.05)

Summer Solstice
Wind = 0 kts

Summer Solstice
Wind = 10 kts
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Physics-based classification: Machine learning classification:

Can we train machine learning algorithms to 
classify SAV in these complex coastal waters?



Can machine learning algorithms be used to 
automate SAV classification in Chesapeake Bay 
using commercial satellite data?

• Five different locations
• Highly turbid oligohaline upper Bay

• Susquehanna Flats - large stable meadow of 
Valisneria americana

• Chester River – small & variable patches of SAV 
(multiple spp.) along river banks

• Moderately turbid mesohaline central Bay
• Smith and Tangier Islands – variable patches of SAV 

(Ruppia americana and Zostera marina)
• Polyhaline York River

• Goodwin Island & Mobjack Bay – variable meadows of 
Ruppia americana and Zostera marina

• Less turbid than upper 
• Oceanic coastal lagoons

• South Bay – extensively restored meadow of Zostera 
marina

• Highest salinity, lowest turbidity

Baltimore

Washington, D.C.

Hampton Roads.

Google Earth
Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Image Landsat/Copernicus
Data LDEO-Columbia, SNSF, NOAA



NOAA Digital Coast (https://coast.noaa.gov/digitalcoast/) 
now provides 10 m (or better DEMs) for the US Coast

https://coast.noaa.gov/digitalcoast/


• Planet RGB 
image



• Planet RGB 
image
• Manually 

drawn 
polygons from 
2020 VIMS SAV 
Survey



• Planet RGB 
image from 31 
July 2021
• Manually 

drawn SAV 
polygons from 
2020 VIMS SAV 
Survey
• Our automated 

classification of 
SAV using the 
Support Vector 
Machine 
Classifier in 
ArcGIS
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• Manually 
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• Planet RGB 
image from
• Manually 

drawn SAV 
polygons from 
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Survey
• Our automated 

classification of 
SAV using the 
Support Vector 
Machine 
Classifier in 
ArcGIS



• Planet RGB 
image from 4 
May 2021
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• Planet RGB 
image from 5 
June 2021

Spidercrab Bay
And
South Bay
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Conclusions
• Satellite image quality & quantity are improving for SAV mapping

• Radiometrically calibrated and atmospherically products are readily available from 
several public & commercial sources

• WorldView2/3 produce excellent high resolution images, but
• Tasking requirements makes their use for routine monitoring difficult
• Radiometric calibration and atmospheric correction are not standardized across 

scenes
• Maxar imposes considerable restrictions on public distribution of image data

• Dove PlanetScope images 
• are amenable to automated classification 

• Results from 4 m satellite imagery are consistent with hand-drawn polygons derived from 
VIMS 0.25 m aircraft imagery 

• Support Vector and Convolutional Neural Network algorithms perform similarly
• Local training is required, but training data can be provided from standardized locations

• Daily images of Chesapeake Bay eliminate the tasking problem
• 1 image per day acquisition yields 1 -2 usable images per month
• Enables repeated classification and seasonal time series



Continuing work
• Refine our machine learning algorithm

• Compare different approaches – e.g., Random Forest vs. CNN
• Can we eliminate training on each image?

• Reduce mis-classifications through the use of 
• Water quality flags for high turbidity, CDOM, etc.
• Repeated classification of multiple scenes to eliminate single pixel 

errors

• Automate the workflow from image acquisition through 
classification to biogeochemical products 


