

Overview

- Introduction to ocean color algorithms and water clarity applications
- Methods for creating a satellite water clarity product using in situ observations
- Recommendations for Chesapeake Bay

In situ measurements cannot fully capture variability alone.

Coupling remotely-sensed satellite measurements with in situ measurements could provide a more complete understanding of water clarity changes and drivers in coastal ecosystems.

Ocean color algorithms can estimate useful biogeochemical parameters.

Coastal oceans introduce unique challenges for remote sensing.

Extensive *in situ* water quality data from the Virginia Coast Reserve LTER provide an opportunity to evaluate satellite ocean color algorithms.

The satellite algorithm overestimated Secchi depths relative to their corresponding in situ values.

Our model can describe **31%** of variation in *in situ* measurements.

The model improved estimates from bio-optical algorithms that overpredicted water clarity.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{model,i} - x_{in \, situ,i})^2}$$

Unadjusted: RMSE = 0.94 m

Adjusted: RMSE = 0.21 m

$$MAPD = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{x_{model,i} - x_{in \, situ,i}}{x_{in \, situ,i}} \right| \times 100\%$$
 Unadjusted: MAPD = 120% Adjusted: MAPD = 25%

It is crucial to couple in situ observations with satellite observations to understand and predict changes in water clarity.

Satellites capture spatial patterns unresolved by point measurements.

Our product:

- 1. Increases the spatiotemporal scope of in situ water clarity data
- 2. Improves estimates from bio-optical algorithms that overpredicted water clarity
- 3. Decreases errors associated with Landsat-8/Sentinel-2 differences

How we are improving this product:

- Reprocessing satellite imagery with improved code
- Decreasing match-up period (± 1 day)

SeaDAS processing guide available on my github: https://github.com/ocean-slang/SeaDAS

Chesapeake Bay recommendations

- Create a satellite product harmonious with a long term in situ dataset
- Apply our methodology with ±1 day window, expand as needed
- Atmospheric correction C2RCC (Windle et al., 2022)
- Drones

Water quality parameters were strongly seasonal, with peaks in various parameters co-occurring with a seasonal minimum in Secchi depth.

