Above the Rock:

Native Landscaping in the Riparian Buffer

Doug DeBerry

View Who.

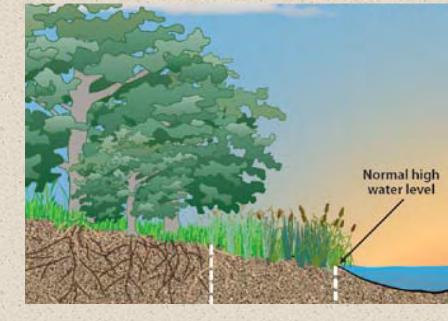
Riparian Buffer Zone

Functional

Degraded

What is "Functional"?

- Ecosystem function: The physical, chemical, and biological processes or attributes that contribute to the selfmaintenance of an ecosystem (e.g., nutrient cycling, biodiversity, habitat, primary productivity)
- Ecosystem structure: The 3dimensional aspect of an ecosystem that gives it shape and physical character (e.g., vegetation type/height, shoreline complexity)

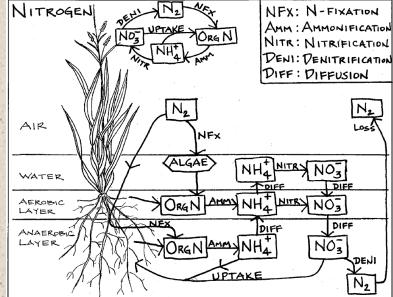


Functions of Riparian Buffers

- Erosion reduction
- Sediment and pollution filtration
- Water temperature moderation
- Habitat provision for wildlife
- Water storage and flood reduction ("flood-flow desynchronization")

Erosion Reduction

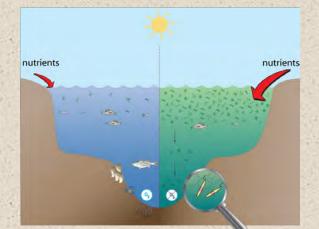
- Conserve topsoil
- Plant roots strengthen the bank and adj slope by binding topsoil to more stable substrata
- Increases soil cohesiveness and adds a tensile strength that can resist shear stresses



 Intercepts rainfall and physically slows/disrupts upland runoff – reduces energy at shoreline interface

Sediment/Pollution Filtration

- Vegetation = physical barrier to sediment-laden stormwater – traps sediments and immobilizes pollutants/nutrients bound to soil particles (e.g., phosphorus)
- Plants remove nutrients and other pollutants by direct uptake – soil organic matter increases bacterial respiration which removes nutrients



Water Temperature Moderation

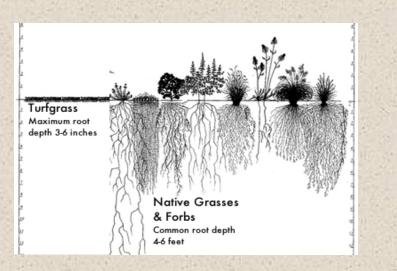
- Shading and thermal absorption capacities of vegetation increase thermal buffering in adjacent water bodies
- Important for shallow near-shore areas prone to algae growth

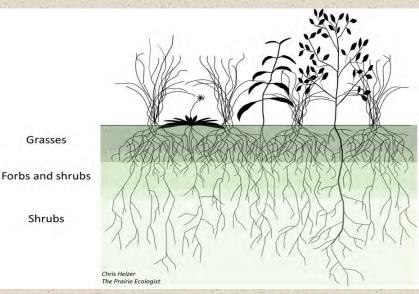
Wildlife Habitat

- Structure for animal nesting, refuge, and roosting/ resting, and core habitat for shoreline ecotone species (e.g., shorebirds and amphibians)
- Forage for terrestrial fauna
- Structure and food for aquatic fauna (e.g., large woody debris and biofilms on plant residues)
- Important link between producers and consumers
- Migration corridors

Water Storage and Flood Reduction

- Absorb rainfall, which recharges groundwater and slows timing of stormwater release
- Reduce energy of floodwaters during storm surges and spreads flow out over time ("flood-flow desynchronization")

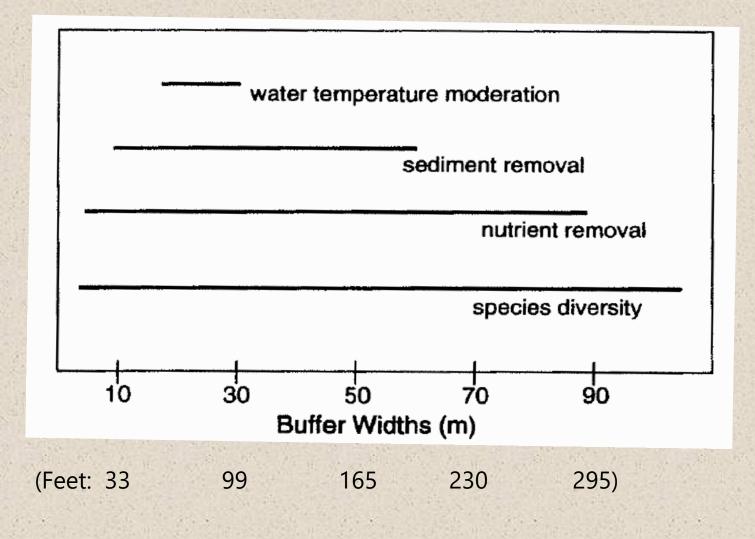




Forest or Turfgrass?

 Forests provide substantially more ecosystem functions in riparian zones vs. turfgrass

Turfgrass Buffer


Turfgrass Buffer

Forested Buffer

How Wide?

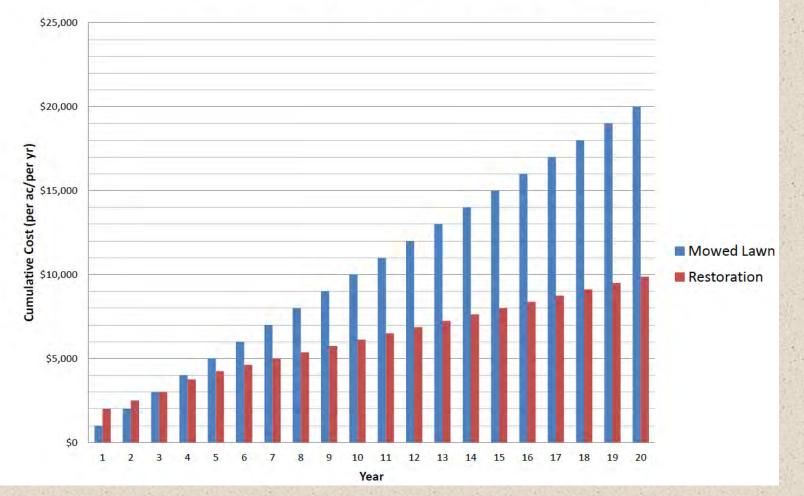
From Castelle et al. 1994 16

Resource Factor	Min. Buffer Width	Citation	Region/Comments
General recommendation for stream and wetland protection	15m (~50ft)	Castelle et al. (1994)	PacNW region (WA) but review is comprehensive
Recommended for resource protection	~ 15m (50ft)	Shisler et al. (1987)	New Jersey. Study conducted on wetlands in Coastal Plain. Recommendation considers development intensity.
Aquatic resource functions after tree harvest (clearing/logging)	15m (~50ft) 20m (66ft)	Lee et al. (2004)	U.S. and Canada, but Mid-Atlantic well-represented. Buffer widths reported as means for intermittent (15m) and perennial (20m) streams
Sediment retention	9m (30ft)	Wenger (1999)	Georgia, but review based primarily on vegetative filter strip studies in Midwest agricultural settings.
Nutrient removal	19m (62ft)	Peterjohn and Correll (1984)	Maryland. Suggested buffer width results in greater than 80% removal efficiency for both nitrogen and phosphorus.
Plant species diversity	10-30m (33-98ft)	Spackman and Hughes (1995)	Vermont. Results varied, but range is reported as minimum width necessary to capture >90% of plant species within the corridor.
Bird diversity	75-175m (246-574ft)	Spackman and Hughes (1995)	Vermont. Results varied, but range is reported as minimum width necessary to capture >90% of bird species within the corridor.
Mammal diversity	10m (33ft)	Spackman and Hughes (1995)	Vermont. Width based on portion of buffer where most mammals were observed traveling.
Nesting habitat for forest interior birds	100m (328ft)	Keller et al. (1993)	Maryland and Delaware
Reptile and amphibian habitat	142m (466ft)	Semlitsch and Bodie (2003)	Nationwide, but summarizing multiple studies from Mid-Atlantic states

Why Native?

Native species:

- Are hardy and well adapted to local environmental conditions
- Maintain and improve soil fertility
- Reduce erosion and runoff
- Provide habitat for native wildlife
- Increase pollinator services for surrounding agricultural lands
- Contribute to the overall health of natural communities
- Require less fertilizer and pesticide
- Help sequester more carbon than turfgrass
- Contribute to the maintenance of biodiversity on the landscape



What About the Cost?

Cumulative Cost Comparison between Planting & Maintaining Prairie (using average-cost seed mix) vs. Maintaining Existing Mowed Lawn

Integrated Vegetation Management (IVM)

EPA Definition:

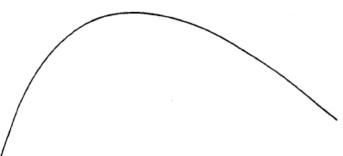
"...the practice of promoting desirable, stable, low-growing plant communities that will resist invasion...through the use of appropriate, environmentally-sound, and cost-effective control methods."

(https://www.epa.gov/pesp/integrated-vegetation-management-fact-sheet)

IVM is "...a treatment that minimizes its own use in the long run..." (Nowak and Ballard. 2005. J. Arboric. 31:28-37)

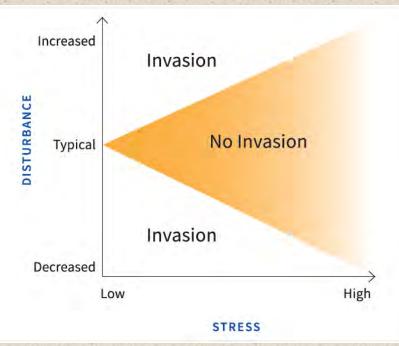
Techniques:

- Chemical
- Biological
- Cultural
- Mechanical
- Manual


Goals / Objectives Management Target / Treatment

Monitoring

Adaptive Management


IVM and Invasion Ecology

Intermediate Disturbance **Hypothesis**

Frequency or Intensity of Disturbance

Based on: Connell 1978. Science 199:1302-1310.

Based on: Alpert et al. 2000. Perspect. Plant Ecol. Evol. Syst. 3:52-66.

Relative intensity of STRESS Relative High Low intensity of DISTURBANCE Competitive Stress-tolerant Low strategy (C) strategy (S) Ruderal No viable High strategy (R) strategy (X)

IVM maximizes the potential for native species richness by exploiting the stress-disturbance dynamic

Based on: Grime 1977. American Naturalist 111:1169-1194.

Two Years After Restoration...

* Relative cover of native species 92.6%

PLOTS			
-2 2-3 3-1 3-2 3	3-3 4-1 5-1 5-2 5-3 6-1 6-2 6-3 7-1 7-2 8-1 9-1 9-2 Relative Cover by 5p		
15 38 63 15 0	0.5 38 38 15 63 98 15 63 0.5 85 85 35.15%		
85	3 63 38 3 63 63 15 15.30%		
63	38 15 9.96%		
5 85 3 1	15 63 7.47%		
15	63 0.5 38 3 5.68%		
15	63 38 5.52%		
	85 3.50%		
	15 3.21%		
5 0.5 3 3 1	15 15 0.5 3 3 15 3 290%		
3 3 15 15	3 15 0.5 2.49%		
3	3 0.5 3 3 0.5 2.47%		
15	3 3 210%		
	15 0.62%		
	15 0.62%		
15	0.62%		
	0.62%		
	0.5 3 0.5 0.19%		
	3 0.14%		
	3 0.12%		
	3 0.12%		
	3 0.12%		
	3 0.12%		
	3 0.12%		
	3. 0.12%		
	3 0.12%		
	3 0.12%		
3	0.12%		
3	0.12%		
3	0.12%		
	0.5 0.04%		
	0.5 0.02%		
	0.02%		
10	157 181 120		

Invasive Species in Red Type

More Info on Natives?

- Chesapeake Bay Foundation (https://www.cbf.org/join-us/more-things-you-cando/in-your-yard/native-plants.html)
- Maryland Extension (<u>https://extension.umd.edu/resource/recommended-native-plants-Maryland</u>)
- USFWS (https://www.fws.gov/chesapeakebay/pdf/NativePlantsforWildlifeHabitatandConservationLandscaping.pdf)
- Chesapeake Bay Native Plant Center (https://www.nativeplantcenter.net/)
- Maryland Plant Atlas (https://www.marylandplantatlas.org/index.php)
- Digital Atlas of Virginia Flora (http://vaplantatlas.org/index.php?do=start)
- VA DCR (https://www.dcr.virginia.gov/natural-heritage/nativeplants)
- Maryland Native Plant Society (https://mdflora.org/)
- Virginia Native Plant Society (https://vnps.org/)
- Flora of Virginia App (https://floraofvirginia.org/flora-app/)

Contact Info

Doug DeBerry dadeberry@wm.edu ddeberry@vhb.com 757-903-7310

