THE EGG INDUSTRY CENTER

ADVANCING SCIENCE FOR A THRIVING INDUSTRY

DR. RICHARD S. GATES, CENTER DIRECTOR Professor in Ag & Biosystems Engineering, and Animal Science

POULTRY AMMONIA EMISSIONS (PRODUCTION TRENDS

- ✓ Emissions Factors: pros and cons
- ✓ General Trends
- ✓ Recent Published Information
 Emission Factors Broilers
- ✓ How to measure emissions?
 - Ventilation rate
 - Concentration in exhaust stream
 - o Dynamics
 - Recent technology updates

Reference summary for daily ammonia emission factor

Potential variables influencing broiler ammonia emission factor:

- inventory
- live animal weight
- flock age
- exhaust temperature
- exhaust relative humidity
- Airflow
- ambient temperature
- ambient relative humidity
- litter age and status
- litter moisture
- litter pH
- litter total ammoniacal nitrogen
- litter total Kjeldahl nitrogen

Selected variables based on EPA emission models (EPA, 2021):

- inventory
- bird weight
- ambient temperature
- ambient relative humidity

nating Methodologies for Broiler Operations. Available at: https://www.epa.gov/system/files/documents/2021-08/development_of_emissions_estimating_methodologies_for_broilers.pdf,____

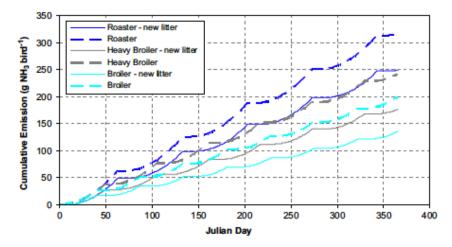
Site location	Bird inventory	Grow-out weight (kg)	Measurement period: market age (days) USA	Ambient Temperature (°C)	Ambient RH (%)	Emission factor (g d ⁻¹ bird ⁻¹)	Reference	
Alabama	NA	3.0	28-55: 55	21.1-32.2	NA	0.14-0.74	W Worley et al. (2002)	
Kentucky	20,000-25,000	NA	11-57: NA	-12.0-16.0	NA	0.02-1.29	Casey et al. (2003)	
Pennsylvania	31,965		13-15: NA	-0.6-14.4		0.31-0.34	5 M/	
	30,652	NA	20-22:NA	-1.7-11.1		0.63-0.92		
	31,272-32,269		1-3: NA	-16.1-0.0	NA	0.0		
	30,350		13-15: NA	-10.6 to -6.1		0.02-0.07	F. Wheeler et al. (2003)	
	25,000		11-13: NA	-1.5-6.6		0.08-0.12		
Kentucky	19,441		21-23:NA	3.7-16.0		0.02-0.27		
Texas	27,500	2.4	8-47: 49	NA	NA	0.63	E. Lacey et al. (2003)	
Delmarva	11,500	NA	29-37: 42	23.6-31.5	54.0-96.0	1.18	Siefert et al. (2004)	
			≤10: 4 8			0-0.57		
Kandaralar			15-30: 48			0.10-0.97	Descertore et el (2005)	
Kentucky	NA	NA	30-42: 48	NA	NA	0.32-1.71	Pescatore et al. (2005)	
			≥48: 48			0.71-2.34		
	25,000-32,700	2.2	1-45: 42	NA	NA	0.47		
Kentucky, Pennsylvania		2.2	2-42: 42	NA	NA	0.45	F. Wheeler et al. (2006)	
		2.5	1-53: 49	NA	NA	0.76		
		3.3	1-55: 63	NA	NA	0.98		
Kentucky	25,800 (winter); 24,400 (summer)	NA	365: 50-5 4	-10.0-30.0	NA	0.49-0.62	R Burns et al. (2007)	
California	21,000	2.65	365: 46	3.3-31.1	NA	0.50±0.44	J. Lin et al. (2012)	
Arkansas	100,000-122,800	1.91-3.04	42-57	NA	NA	0.77-0.92	Moore Jr et al. (2011)	
Georgia	23,500	NA	31-52: 56	3.9-29.7	NA	0.44-2.05	Harper et al. (2021)	
			Foreign countrie	s				
France	5,086	1.8-1.9	0-40: 40	NA	NA	0-0.29	Guiziou and Béline (2005)	
San Joaquin Valley,	19,295	95 2.7	0-49: 47	22.5-25.0	41.0-67.5 34.0-67.5	0-0.8		
Canada				7.5-14.0		0-0.7	Harper et al. (2010)	
Slovak Republic/Germany	25,000	2.0	1-40: 42	20-35	NA	0.52-0.78	Knížatová et al. (2010)	
Shandong province, China	12,240	NA	35-42: 42	-6.72-26.75	26.75-94.74	0.05-0.30	Zhu et al. (2010)	
São Paulo, Brazil	23,000		0-42: 42-49	NA	NA	0.25	Lima et al. (2011)	
	30.000					0.45		
	20,000					0.10		
	20,200	NA				0.25		
	34,000					0.40		
	33,500					0.50		
Minas Gerais, Brazil	23,100	NA	15-45: 43	-4.0-40.0	15.0-90.0	0.24-0.52	Mendes et al. (2014)	

Example Estimates

Daily ammonia emission factor (g d⁻¹ bird⁻¹): 0-2.34 as function of age

Examples for estimating annual emissions based on daily emission factor of a broiler house:

- Given conditions:
 - \circ daily emission factor during production ≈ 0.50 g d⁻¹ bird⁻¹
 - hourly emission factor during downtime \approx 250 g h⁻¹ (A. Topper et al., 2008)
 - o bird inventory = 25,000 birds/house
- Example 1
 - Production cycle = 49 days
 - Downtime = 14 days
 - o 6 flocks and 5 downtime periods in a year
 - Annual emission = 4.51 US tons per house per year
- Example 2
 - Production cycle = 56 days
 - Downtime = 14 days
 - o 5 flocks, 5 downtime periods, and additional 10-d downtime in a year
 - Annual emission = 4.39 US tons per house per year


Example Estimates

Delmarva region produced 567 million broilers in 2021

- 567 million birds/(25,000 birds house x 6 turns/yr) = 3,780 houses
- From example 1 of previous slide:
 - (Production cycle = 49 days; Downtime = 14 days; 6 flocks and 5 downtime periods in a year)
 - Annual emission = 4.51 US tons per house per year x 22,680 houses = 17 kT/yr
- Is this an accurate estimate??
- Why or why not???
- Factors that influence that number include:
 - Number of houses, turns/year, use of litter amendment, downtime btwn flocks
 - Improvements to diet
 - Dated estimate of "emission factor"
 - Market weight of each flock
 - etc.

NH3 INVENTORY FROM 2008

A linear relation has been recently reported between NH₃ emission rate, bird age and litter condition (Casey et al., 2004a,b; Wheeler et al., 2004, 2006). The slope on Eq. (1) has a standard error ($SE_{\rm ER}$) of 1.1 mg NH₃ bird⁻¹ d⁻¹.

 $ER = 0.031 \cdot x, \tag{1}$

where

x =

$$ER = emission rate, g NH_3 bird^{-1} d^{-1},$$

bird age(d) if used litter,

if new litter and bird age <7,

bird age -6 if new litter and bird age ≥ 7 .

Fig. 1. Cumulative ammonia emission over a year, from multiple flocks, for different bird market weights (roaster, heavy broiler o broiler) and litter conditions (new litter or built-up litter), using mean ER as per Eq. (1).

Table 2

Total single flock emission^a expressed per bird (g NH₃bird-marketed⁻¹) by production category of roaster (3.25 kg), heavy broiler (2.45 kg) and broiler (2.1 kg), and type of litter used during grow out

Basis of NH ₃ emissions	Roaster		Heavy broiler		Broiler	
	New litter	Built-up litter	New litter	Built-up litter	New litter	Built-up litter
Mean	49.5	62.5	28.0	38.0	17.4	25.4
-3 SEER	44.7	56.4	25.3	34.3	15.7	23.0
+ 3 SEER	54.3	68.5	30.7	41.7	19.1	27.9
Mean, adjusted	44.4	56.5	27.0	37.1	17.6	25.8

Source:

Gates et al (2008) Atm Env Vol 42

The "Mean, adjusted" row is obtained by integrating over an entire year, and dividing by the number of flocks per each category. ^aUSEPA emission factor is 100 g NH₃ bird⁻¹, by contrast.

Industry Center

7

EPA OVER-ESTIMATED 18+ YEARS AGO...AND MANAGEMENT HAS CONTINUED TO EVOLVE

Table 3

Annual emission rate (AER) expressed on a per bird-place (g NH₃ bird-place⁻¹ yr⁻¹) by production category of roaster (3.25 kg), heavy broiler (2.45 kg) and broiler (2.10 kg), and type of litter used during grow out

Basis of emission rate estimation	Roaster		Heavy broild	er	Broiler		
	New litter	Built-up litter	New litter	Built-up litter	New litter	Built-up litter	
Mean	248.5	316.2	175.8	241.3	135.2	198.6	
-3 SE _{ER}	224.4	285.6	158.8	218.0	122.1	179.4	
+ 3 SE _{ER}	272.5	346.8	192.8	264.7	148.3	217.8	

For comparison purposes, USEPA prediction is: $100 \text{ g NH}_3 \text{ bird}^{-1} \times 5.5 \text{ flocks yr}^{-1} = 550 \text{ g NH}_3 \text{ bird-place}^{-1} \text{ yr}^{-1}$.

Source:

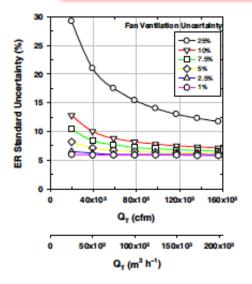
Gates et al (2008) Atm Env Vol 42

- Feed conversion continues to improve balanced rations reduce excess protein (i.e. Nitrogen) in the feces
- Similarly, use of phytase to reduce excess phosphorus in feces
- Broiler production reliance on litter amendments for NH3 control
- Layer industry moving to cage-free currently 34% of production
 - Manure belts, promoting feces drying, reduces uric acid \Rightarrow NH₃
 - No new high-rise housing for about a decade
- Reduced NH3 emissions in past decade from these facility and management efforts

HOW TO MEASURE EMISSIONS

Ventilation Rate...All the time

- No two fans have identical performance
- Affected by:
 - o static pressure
 - Maintenance
- Modern controllers can log fan use but still need calibration for each fan


Concentration at Exhaust

- Tendency has been for high-dollar scientific instruments
- PPM, or sub-ppm accuracy

"MEASURING" EMISSIONS

Putting VR and Concentration together:

$$\text{ER}_{[g]} = \text{Q}_{e}\left(\frac{[G]_{e}}{T_{e}} - \frac{\upsilon_{i}}{\upsilon_{e}} \times \frac{[G]_{i}}{T_{i}}\right) \times 10^{-6} \times T_{\text{std}} \times \frac{P_{a}}{P_{\text{std}}} \times \frac{w_{m}}{V_{m}}$$

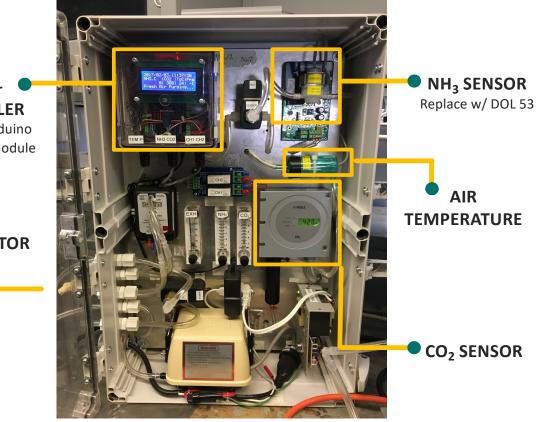
A 5% uncertainty in NH₃ is "swamped" by ventilation rate uncertainty.

Sources:

- Gates et al (2009)
- Moody et al (2006)

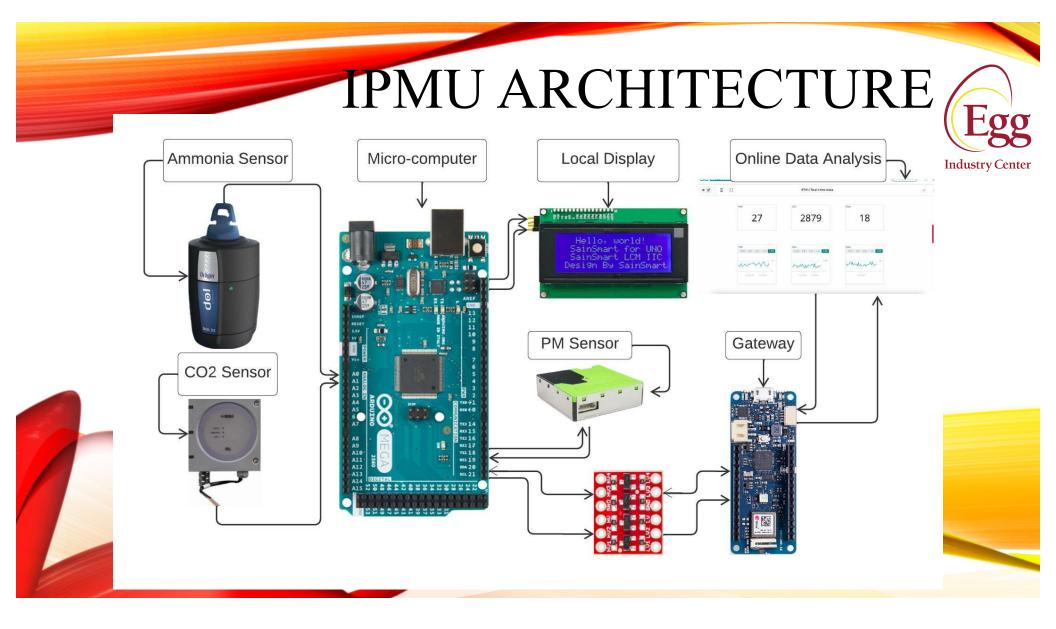
Also need:

- Consistency in measurement frequency
- Combine into hourly, daily, and greater intervals
- Effect of growing birds on reporting


DYNAMICS are important

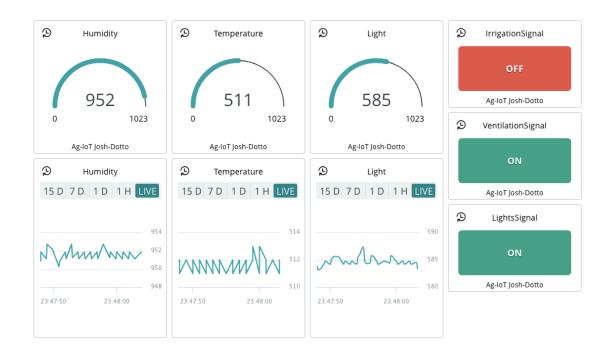
Industry Center

INTELLIGENT PORTABLE MONITORING UNIT (IPMU)


MICRO-CONTROLLER Replace w/ Arduino Wireless/IoT Module

PM MONITOR

12


Industry Center

ONLINE CONTROL DASHBOARD

Live Sensor data - Josh. Dotto

Cloud-based data storage, retrieval, analytics

MS project, Mr Josh Dotto, University of Nebraska

(Dr. Y. Xiong lab)

WWW.EGGINDUSTRYCENTER.ORG

Richard S. Gates, Professor & Director of EIC rsgates@iastate.edu

