CBP Ammonia Data 101

Gary Shenk – CBPO 5/4/2022

STAC workshop

Improving Modeling and Mitigation Strategies for Poultry Ammonia Emissions
Across the Chesapeake Bay Watershed

The Chesapeake Bay Poultry Ammonia Issue

...along with other forms of nitrogen from ag, other sources of nitrogen, plus phosphorus and sediment

CBP Watershed Model

Data and Model Inputs —

Pollution Control Data Land Use Data Point Sources Data Septic Data U.S. Census Data Agricultural Data

Land Use Change Model

Airshed Model

Precipitation Data Meteorological Data Elevation Data

Soil Data

How does the CBP calculate deposition?

Monitoring sites

Source: Grimm 2017

How does the CBP calculate deposition?

• Emission sources

Source: Grimm 2017

How do we calculate deposition?

- Deposition in Rainfall
 - Statistical modeling
 - Sources
 - Rainfall
 - Wind direction
- Dry-weather deposition
 - CMAQ
- Future change in deposition
 - CMAQ

Source: Grimm 2017

Atmosphere Volatilization **Non-Crops** Application Runoff Crops Bay

Seaburst.com http://pubs.ext.vt.edu/442/442-308/442-308.html

Phase 6 Manure

Conceptual Model

Phase 6 Manure Conceptual Model

Add volatilization *filtering* practices

Effect exaggerated

Image Credits
https://utextension.tennessee.edu/lincoln/4-H/Pages/Livestock-Skillathons-%28Beef-Sheep-and-Swine%29.ass

http://ph.water.ugr.gov/argiot/champlain.htm/

Phase 6 Manure Conceptual Model

Add volatilization restriction practices

Effect exaggerated

ge Credits s://utextension.tennessee.edu/lincoln/4-H/Pages/Livestock-Skillathons-%28Beef,-Sheep-and-Swine%29. elwoodszanch.com

http://pubs.ext.vt.edu/442/442-308/442-308.html

Atmospheric path is not efficient

Reduced nitrogen: Ammonia

	Emitter DE	Emitter MD	Emitter NY	Emitter PA	Emitter VA	Emitter WV
To Watershed	24.0%	49.6%	13.7%	34.1%	41.8%	25.7%
Delivered	3.2%	6.8%	1.8%	5.1%	4.6%	3.2%
To Bay	2.0%	4.4%	0.6%	1.6%	4.4%	1.7%
Total Delivered	5.3%	11.2%	2.4%	6.7%	8.9%	5.0%

Potential Reductions currently available in CAST

Million pounds of N reduction to the tidal waters

Source: CAST scenarios from Joe Wood

Source Apportionment to Chesapeake Bay Watershed

Total **Reduced** N Deposition

Summary

- The CBP estimates total atmospheric deposition load
- The CBP estimates reductions in load to the Chesapeake from changes in volatilization
 - It's complicated
- Using the current model, almost 5 million pounds of reduction are available, but little used
- Improved transport estimates are on the way