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OVERVIEW: MY WORK

* Environmental social scientist

* Cross-scale forces that shape farmers’ recognition of
and responses to environmental change

* Mostly focused on N management

* Interdisciplinary, collaborative, applied
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* Inter- or transdisciplinary research increasing
seen as key to address major environmental

TOd ay'S talk: challenges (ouser etal. 2021).
What’'s my

e But more needs to be done

 Social science still often seen only as a means for
stakeholder engagement

e Social scientists often resistant to collaborative
and applied work

point?




Today’s talk:
What’s my

point?

* What I'll try to get across today:

* “Good” environmental research and
“effective” environmental policy/projects
depend on committing to integrating the
social and biophysical sciences across our
efforts

* To get my point across—two examples:
* 1. What climate modeling for the Bay is
missing
e 2. How our understanding of technical BMPs
may be flawed
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INCREASED LOSS OF

(Robertson et al. 2013)
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Skeptical but
Adapting

* Many farmers reporting
experiencing more
impacts from heavy rain

e ->challenging their
operations

» Adaptation/resilience
widely supported

Doll et al. 2017; Houser et al. 2017; Houser 2018 H




Not all adaptation is created equal...
* But HOW are farmers adapting?

* My research suggests...

* Farmers find many recommended “adaptation” practices ineffective...
* e.g., cover crops, nitrogen 4-R

* Instead, most are increasing N application rates
* In anticipation of or in response to heavy rain events
* Extra N is left over to support crop growth

Houser & Stuart 2020



Houser & Stuart 2020

Results: Higher N rates

* “The amount of rain we’ve had [recently] has
made us add an additional 50 pounds of
[nitrogen at] sidedress, just because the rain
flushes it down the system”
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(Ib N per acre per year)

N rate is key
factor shaping N
pollution

Hoben et al. 2010;
Robertson and Vitousek 2013
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Atchafalaya River Basin Northeast
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My point -

* Obviouslyl] good environmental social
science depends good biophysical science

 If we don’t incorporate social sciences into
existing environmental modeling...

* we cannot accurately understand the
nature of the challenges we face

* nor the scope of the solutions that are
needed




Today’s talk: What’s my point?

* 1. What climate modeling for the Bay is missing

* 2. How our understanding of technical BMPs may be flawed




N-Serve
Optinyte" technology

NITROGEN STABILIZER

Technical
N BMPs
e.g. 4-R



BMP Cost-effectiveness (N vs. P for Chesapeake Bay Watershed)
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BMPs in practice—in theory

For instance: Sidedress application [J lower rate
by = 40% w/o harming vyields and thereby

reduce environmental harms (ceni et al. 2005; zhang et al.
2015).

I=1=1

N application rate Reduce environmental harm

In-season or “split N” application

But achieving this outcome depends on how
BMPs are used by farmers

20



BMPs in practice—in practice

In-season or “split N” application

Houser 2021, Agriculture and Human Values

Statistical modeling of nearly 2,600 farmers’ reported
practices suggests...

N application
rate

What does this mean: Practice is not being used in a
way that maximizes its potential to reduce
environmental harm

*controls for key agronomic factors, including yield

21



e Preliminary...

* Only 10% of BMP adoption studies have assessed if practices are

being used in ways that achieve potential biophysical outcomes (voder
et al. 2019)

e More work needed!

BM PS in * But evidence is mounting that adopted practices are not being used as we
would expect...
ra Ctice * Expectation: Farmers use nitrogen tests to ensure they’re not
p over-apply N

* Reality: Farmers use nitrogen tests to ensure they’re not
underapplying N

Reimer, Houser, & Marquart-Pyatt 2020, Journal of Soil and Water Conservation

* Expectation: Nutrient management plans will increase nutrient use
efficiency

* Reality: Farmers abandon plans if they feel circumstances demand
alternative N management

* Osmond et al. 2015, Journal of Environmental Quality



* Technical BMPs are often seen as key part of the
solution

* Embedded within our progress modeling-e.g.
CAST

e But: BMPs, like many green technologies, are used

M o t. within broader social, economic, and political
V p0| nt. contexts and subject to individual preferences

* Social and biophysical processes shapes if and
how BMPs are being used

* By not integrating: We may be mis-understanding
our progress and the barriers to progress in Bay
watershed



Closing thoughts...

* Integrating biophysical and social sciences is a critical if we are to accurately understand...
* The scope of environmental challenges we face
* Our progress towards addressing them
* What interventions work and don’t work to promote meaningful behavior change

* Don’t have all the answers, but...
* Much effort dedicated to changing farmers’ behavior at the individual-level
 TNC/UMCES research and implementation efforts:

* What motivates farmer AND how is individual behavior shaped by biophysical, social,
and economic contexts that surround it?

* From this [1 we’re trying to scale-up our efforts to not just incentivize, but to also
enable meaningful behavior change and better document it given these contexts.

* Doing this through collaborative, interdisciplinary efforts
* Not always easy, but ultimately, we feel its necessary



Grand Challenge

Prepared for Environmental Change
ENVIRONMENTAL RESILIENCE INSTITUTE ﬁv

Thank you!




