Genetic Rescue in Headwater Trout

Andrew Whiteley

Department of Ecosystem and Conservation Sciences Wildlife Biology Program Montana Conservation Genomics Lab University of Montana

Conservation Prioritization

- Which population(s) do we conserve?
 - Intact metapopulations
 - Maintain 'portfolio effect'
 - Restore connectivity to small isolated populations when possible
 - If restoration of natural connectivity is not feasible, should we assist gene flow?

Genetic Rescue

- Definition: a decrease in population extinction probability owing to gene flow, best measured as an
- increase in population growth rates
 - Requires a small amount of gene flow into a small, inbred population (< 10 individuals)
 - Goal is to boost population growth rate, increase in genetic variation and adaptive potential is an additional benefit
 - Primary risk: outbreeding depression

Conservation biology

Restoration of an inbred adder population

Madsen et al. 1999 Nature

Madsen et al. 2004. Biological Conservation

Madsen and Ujvari 2011 Herp. Cons. and Biol.

Correspondence

Genetic rescue restores longterm viability of an isolated population of adders (*Vipera berus*)

Thomas Madsen^{1,2,*}, Jon Loman^{3,6}, Lewis Anderberg⁴, Håkan Anderberg⁴, Arthur Georges⁵, and Beata Ujvari²

CellPress

Emerging Patterns

Trends in Ecology & Evolution

¹Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, M ²Popartment of Biology, Colorado Statu Liviversity, Fort Collins, CO 89523, USA ³Creduate Degree Porgram Tic Eclogy, Colorado Statu Liviversity, Fort Collins, CO 89523, USA ⁴Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AX 98901, ¹Department of Biology and Marine Biology, University of Alaska Southeast, Southeast, Southeast, Southeast, Southeast, Southeast, Southeas

Genetic rescue to the rescue Andrew R. Whiteley^{1*}, Sarah W. Fitzpatrick^{2*}, W. Chris Funk²

The Exciting Potential and Remaining Uncertainties of Genetic Rescue

Donovan A. Bell,^{1,7,*} Zachary L. Robinson,^{1,7} W. Chris Funk,² Sarah W. Fitzpatrick,^{3,4} Fred W. Allendorf,⁵ David A. Tallmon,⁶ and Andrew R. Whiteley¹

 Evidence strongly supports that re-establishing gene flow among relatively recently connected populations will increase fitness

David A. Tallmon

- Risks occur with strong genetic divergence or when life-history/phenological differences large
- Clear need for more aggressive replicated tests and use of GR
- Genomics might help identify source populations or individuals (we aren't there yet)
 - Maximize alleviation of inbreeding depression
 - Minimize risk of outbreeding depression

Whiteley et al. 2015, Bell et al. 2019

15

New Paradigm?

- Call for flipping the script (Frankham et al. 2017, Ralls et al. 2018)
 - Acknowledges the cost of doing nothing
 - Argues that managed gene flow should be the default consideration
- We agree that more widespread restoration of gene flow is likely called for, but we recommend a more tempered approach, especially in taxa known for local adaptation

Headwater Trout

- Many inbred and isolated populations
- Managing for isolation to keep non-native species out at times
- But, we also know salmonids are often locally adapted
 - Taxa for which concerns about outbreeding depression justified?

- Data from replicated experiments
- Brook trout in Virginia
 Initiated in 2011
- Westslope cutthroat trout in Montana
 Initiated in 2017

Test in Virginia Brook Trout

• We conducted a replicated GR experiment in natural brook trout populations

- 4 isolated recipient sites

- 1 isolated control site

ARTICLE

Fragmentation and patch size shape genetic structure of brook trout populations

Andrew R. Whiteley, Jason A. Coombs, Mark Hudy, Zachary Robinson, Amanda R. Colton, Keith H. Nislow, and Benjamin H. Letcher

Five Above-Dam Headwater Streams

Abundance 2010-2011

GR-motivated Translocations 2011

Experimental Design

Source

- Downstream large patch
- Moved 5 males, 5 females in the autumn
 - Same for every site
- Transported with aerated backpack tanks
 - Same day as capture

Translocation

- Released at multiple nearby locations
- Removed 5 males and 5 females
 - To control for demographic effects

Parentage Assignment for 2012 Offspring

• F₁ Offspring in 2012

- 2 resident parents (RR)
- 2 transplant parents (TT)
- Resident x Transplant Hybrid (RT)

Site 1R

58% of offspring

Site 3R

37% of offspring

3R 2012 F₁ Cohort

Successful transplants 3 out of 5 males → 158 offspring

All 5 females \rightarrow 115 offspring

Population Size 2010-2013

Control

Family size or Body Size Differences? 2012 Age-0

Robinson et al. 2017 Mol. Ecol.

Transplant adults not significantly larger than residents

Survival 2012 to 2013

Note: Benign environmental conditions

Robinson et al. 2017 Mol. Ecol.

32

Response in Genetic Variation

After

Upstream Distance (m)

Lineage 🛉 RR 📥 RT 📫 TT

Summary of the F₁

- Disproportionately high transplant reproductive success
- Body size and growth differences
 - Consistent with heterosis
- YOY body size differences could translate to positive demographic effects
- No survival differences, but they could have occurred later
- Large gains in genetic variation

Continued Analysis

- Outbreeding depression could still occur
 - $-F_2$ and beyond
 - Pedigree reconstruction for F_2 with SNPs
- Continued estimates of reproductive success and survival for the F₁ and F₂

Analysis from 2011 – 2018

- Build a pedigree through F2, hopefully F3 to examine fitness effects of admixture
- New GTSeq panel (work by Zak Robinson)
 - Based on discovery data set led by Mariah Meek's lab
 - 244 SNPS
 - 201 'microhaps' or 'microhaplotypes'
 - Multiple nearby SNPs scored as a single locus
 - Makes SNPs more like microsatellites
 - Mean heterozygosity of microhaps = 0.401
 - » Up to 6 alleles at a locus (59% of microhap loci have 3 alleles)
 - 5 sex markers included

Test in Westslope Cutthroat Trout

- Few non-hybridized populations remain east of the Continental Divide
- Manage for isolation to avoid:
 Hybridization with rainbow trout
 - Brook trout competition, replacement

Study streams and translocations

- Transplant 6 or 8 adults
 - Within basins (Big Hole, Upper Missouri, Belt)
 - Removed adults from recipien sites
- Low genetic variation: Average $H_{\rm E}$ of selected = 0.024 Average eastside $H_{\rm E}$ = 0.038 Average westside $H_{\rm E}$ = 0.106
- Disease testing
- Limited habitat (~3 km of stream
 Isolated
 - Allows monitoring entire pop.

Population abundance

Age-2 and older Summer 2017

Age-1 abundance increased in 3 of 4 experimental sites In 2018 (translocations occurred in Spring 2017)

Offspring size at age-1 (2017 year-class captured in 2018)

- We have sampled annually through 2021
 - Build a pedigree with a combined approach of GTSeq and RAD-Capture
 - Hopefully we will have results through 2021 within a year

• Divergence between transplants and recipient population continuum

Low likelihood of outbreeding depression (OD) higher likelihood of OD

Acknowledgments

Collaborators Montana (WCT) Gordon Luikart, Steve Amish, Seth Smith, U. Montana Ryan Kovach, Lee Nelson, FWP Jim Olsen, Dave Moser, Jason Mullen, Katie Webster - FWP

Virginia (brook trout) Zachary Robinson, U. Montana Keith H. Nislow, Jason Coombs, USFS Northern Research Station Ben Letcher, Matt O'Donnell, Todd Dubreuil, USGS, Conte Lab Mark Hudy, USFS and USGS

Funding NSF, USGS Northeast Climate Science Center, USFS, TNC, NFWF, MT FWP, Murdoch Foundation

