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 Which population(s) do we conserve?

— Intact metapopulations
* Maintain ‘portfolio effect’
— Restore connectivity to small isolated populations

when possible

* If restoration of natural connectivity is not feasible,
should we assist gene flow?




Genetlc Rescue

e Definition: a decrease in population extinction
probability owing to gene flow, best measured as an

* increase in population growth rates

— Requires a small amount of gene flow into a small, inbred
population (< 10 individuals)

— Goal is to boost population growth rate, increase in genetic
variation and adaptive potential is an additional benefit

— Primary risk: outbreeding depression




Habitat loss and degradation

Extinction Vortex

Population structure

\ 4
Age-specific reproduction Inbreeding
¢ and survival rates depression

| I
\‘ Genetic

¢ Population growth rate ¢
Impact of random variation
demographic ¢ Effective population size | —»
events c lat , Inbreeding
¢ ensus population size T coefficient

1 P

'

Probability
of extinction Gilpin & Soule 1986




14
WL

4

o o RN
2
- »

“
[L Wy S




Conservation biology

Restoration of an inbred
adder population

Madsen et al. 1999 Nature
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The Exciting Potential and Remaining
Uncertainties of Genetic Rescue

DonovanA Zachary Rob son W. Chris Funk,? Sarah W. Fitzpatrick,** Fred W. Allendorf,”
Tall'n d Andrew R.

Evidence strongly supports that re- establlshmg
gene flow among relatively recently connected
populations will increase fitness

Risks occur with strong genetic divergence or
when life-history/phenological differences large

Clear need for more aggressive replicated tests
and use of GR

Genomics might help identify source populations
or individuals (we aren’t there yet)
— Maximize alleviation of inbreeding depression

— Minimize risk of outbreeding depression
Whiteley et al. 2015, Bell et al. 201¢
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e Call for flipping the script (frankham et at. 2017, Ralls et al. 2018)
— Acknowledges the cost of doing nothing

— Argues that managed gene flow should be the
default consideration
 We agree that more widespread restoration of
gene flow is likely called for, but we
recommend a more tempered approach,
especially in taxa known for local adaptation




e N

eadwater Trout

* Many inbred and isolated populations

 Managing for isolation to keep non-native
species out at times

e But, we also know salmonids are often locally
adapted

— Taxa for which concerns about outbreeding
depression justified?

17
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* Data from replicated experiments

Brook trout in Virginia
— Initiated in 2011

* Westslope cutthroat trout in Montana
— Initiated in 2017

18
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 We conducted a replicated GR experiment in
natural brook trout populations

— 4 isolated recipient sites

— 1 isolated control site

19 Robinson et al. 2017 Mol. Ecol.
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Fragmentation and patch size shape genetic structure of brook trout
populations

Andrew R. Whiteley, Jason A. Coombs, Mark Hudy, Zachary Robinson, Amanda R. Colton, Keith H. Nislow, and Benjamin H. Letcher
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- Low genetic variation
(Ar HS)
- Low N, (10 —40)
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Source
— Downstream large patch
— Moved 5 males, 5 females in the autumn

e Same for every site
— Transported with aerated backpack tanks
e Same day as capture
Translocation
— Released at multiple nearby locations
— Removed 5 males and 5 females

* To control for demographic effects

I3 — ] »

Robinson et al. 2017 Mol. Ecol.
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* F, Offspring in 2012
— 2 resident parents (RR)
— 2 transplant parents (TT)
— Resident x Transplant Hybrid (RT)

25 Robinson et al. 2017 Mol. Ecol.



-
- 4 v
- v '

a o ,A »

38% of offspring

11 % of potential
spawners
Fall 2011 Spawn >

|

1R 2012 F, Cohort

Resident > Age 1 Successful transplants
4 out of 5 males =2 89 offspring

4 out of 5 females = 169 offspring

26 Transplants Robinson et al. 2017 Mol. Ecol.
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Resident > Age 1

Site 2R

58% of offspring

21 % of potential
spawners

Fall 2011 Spawn >

A

2R 2012 F, Cohort

Successful transplants
3 out of 5 males = 104 offspring

All 5 females = 233 offspring

Transplants Robinson et al. 2017 Mol. Ecol.
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Resident > Age 1
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37% of offspring

8 % of Potential
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A

3R 2012 F, Cohort

Successful transplants
3 out of 5 males = 158 offspring

All 5 females = 115 offspring

Transplants Robinson et al. 2017 Mol. Ecol.
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| Transplant adults not significantly larger than residents
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Allelic Richness
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Disproportionately high transplant reproductive

SUCCessS

Body size and growth differences

— Consistent with heterosis

YOY body size differences could translate to positive
demographic effects

No survival differences, but they could have occurred

later

Large gains in genetic variation

Robinson et al. 2017 Mol. Ecol.
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Continued Analysis
 QOutbreeding depression could still occur
— F, and beyond
— Pedigree reconstruction for F, with SNPs

e Continued estimates of reproductive success
and survival for the F;and F,

37 Robinson et al. 2017 Mol. Ecol.
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Analysis from 2011 — 201'8 '

e Build a pedigree through F2, hopefully F3 to
examine fitness effects of admixture

 New GTSeq panel (work by Zak Robinson)
— Based on discovery data set led by Mariah Meek’s lab
— 244 SNPS

e 201 ‘microhaps’ or ‘'microhaplotypes’
— Multiple nearby SNPs scored as a single locus
— Makes SNPs more like microsatellites
— Mean heterozygosity of microhaps = 0.401
» Up to 6 alleles at a locus (59% of microhap loci have 3 alleles)
— 5 sex markers included

38



—-| - Few non-hybridized populations
remain east of the Continental
Divide

- Manage for isolation to avoid:
- Hybridization with rainbow trou

- Brook trout competition,
replacement

39



Study streams and translocations
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- Transplant 6 or 8 adults
- Within basins (Big Hole, Uppel
Missouri, Belt)

- Removed adults from recipien
sites

- Low genetic variation:
Average H of selected = 0.024
Average eastside Hy = 0.038
Average westside Hg = 0.106

- Disease testing
- Limited habitat (~3 km of stream

- Isolated
- Allows monitoring entire pop.
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 We have sampled annually through 2021

— Build a pedigree with a combined approach of
GTSeq and RAD-Capture

— Hopefully we will have results through 2021
within a year

43



* Divergence between transplants and recipient
population continuum

EB WCT

} !
1 1

Decades ~ Thousands of years
- Reconnect following - Gene flow between long-isolated
recent fragmentation major genetic assemblages

Low likelihood of outbreeding depression (OD)  higher likelihood of OD

44
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