TOOLS FOR STUDYING GENETICS

STAC Brook Trout Workshop

Amy Welsh West Virginia University, School of Natural Resources

GENETIC MARKERS

USE OF MARKERS IN CONSERVATION GENETICS

Ouborg et al. (2010)

GATA GATA GATA GATA GATA

Alleles: length variants

MICROSATELLITES

Advantages

- High variability
- Neutral (migration, drift)
- Established baselines

Disadvantages

- Neutral (no selection)
- Not representative of whole genome

Conservation Genetics

Conservation Genetics

Conservation Genomics

Ouborg et al. (2010)

SNPS (SINGLE NUCLEOTIDE POLYMORPHISMS)

Advantages

- Neutral & adaptive
- Better representation of genome

Disadvantages

- Need lots of them
- SNP identification question-specific
- Can be hard adding samples to existing project

NEXT-GENERATION SEQUENCING

- DNA sequence variation throughout the entire genome
- Identify single nucleotide polymorphisms (SNPs)
- Can find SNPs under selection

Illumina video

NEXT-GENERATION SEQUENCING

- RADseq (and variations)
 - reduce genome complexity using restriction enzymes
- Considerations
 - PCR based can use extracts from previous genetic studies
 - Limited labwork heavy on data analysis
 - Need sufficient depth

Andrews et al. 2016 Nature Reviews Genetics 17:81-92

IDENTIFICATION OF ADAPTIVE LOCI

ADAPTIVE LOCI

May identify same pattern as neutral markers

Few loci = less power Effects of gene flow and small N_e Many genes of small effect Problems with pooling all outliers

Moore et al. 2014

Goal: Develop a genomic resource that enables standardized surveys of genetic diversity in native populations of brook trout

Objectives

1. Identify a suite of genome-wide SNPs representative of range-wide genetic diversity

2. Demonstrate the ability of SNPs to resolve lineages at local to continental scales

Mamoozadeh, N., Whiteley, A., Letcher, B., Kazyak, D., Tarsa, C., & Meek, M. Evaluating genomic relationships across spatial and temporal scales to guide conservation and management of imperiled species. *Submitted to Molecular Ecology Resources.*

Application	Key Questions								
Identifying biologically	a) Which individuals comprise demographically independent management units (e.g., populations)?								
appropriate management units	b) Which populations comprise adaptive groups?								
	c) On what spatial and temporal scales do populations and adaptive groups occur?								
	a) Which adaptive groups exhibit the greatest mismatch with predicted future conditions?								
Conservation prioritization	b) Which adaptive groups exhibit the greatest adaptive potential?								
	c) Are there populations or adaptive groups that harbor unique genetic variation warranting special protection, including variation associated with distinct phenotypic traits?								

Mamoozadeh, N., Whiteley, A., Letcher, B., Kazyak, D., Tarsa, C., & Meek, M. Evaluating genomic relationships across spatial and temporal scales to guide conservation and management of imperiled species. *Submitted to Molecular Ecology Resources*.

GENETIC MEASURES

MEASURES OF GENETIC DIFFERENTIATION

Bayesian clustering

- STRUCTURE
- Identify most likely number of populations based on genetic data
- Clusters in HWE
- Determine individual membership to each cluster

Morgan et al. (2021)

MEASURES OF GENETIC DIFFERENTIATION

- Detects highest level of clustering first
- Poor job at detecting weak structure

MEASURES OF GENETIC DIFFERENTIATION

PCoA, PCA, DAPC

- Based on allele frequencies
- Maximal variation on minimal axes

Morgan et al. (2021)

MEASURING GENETIC DIFFERENTIATION

F_{ST}

Ranges from 0 (the same) to 1 (completely different)

	Dillons_2020	Dillons	Edwards	Hawk	New Creek	Himmelwright	Trout Pond	Waites	Capon	Linton	Mill	Reymann	VA_DR	VA_CC	Edray
Dillons	0.044														
Edwards	0.150	0.132													
Hawk	0.168	0.145	0.222												
New Creek	0.137	0.125	0.167	0.190											
Himmelwright	0.186	0.127	0.219	0.149	0.201										
Trout Pond	0.153	0.095	0.243	0.252	0.164	0.245									
Waites	0.123	0.082	0.132	0.115	0.119	0.131	0.154								
Capon	0.163	0.161	0.253	0.195	0.143	0.225	0.227	0.164							
Linton	0.358	0.316	0.317	0.461	0.266	0.417	0.391	0.334	0.338						
Mill	0.255	0.259	0.326	0.314	0.207	0.346	0.292	0.263	0.240	0.504					
Reymann	0.066	0.016	0.179	0.196	0.162	0.197	0.088	0.137	0.206	0.370	0.285				
VA_DR	0.195	0.204	0.313	0.264	0.183	0.301	0.197	0.226	0.194	0.421	0.278	0.231			
VA_CC	0.177	0.195	0.228	0.224	0.139	0.266	0.220	0.167	0.181	0.354	0.228	0.232	0.157		
Edray	0.286	0.260	0.249	0.348	0.201	0.348	0.297	0.281	0.273	0.377	0.382	0.310	0.314	0.283	
Paint Bank	0.184	0.168	0.209	0.260	0.120	0.260	0.206	0.178	0.225	0.333	0.278	0.203	0.210	0.181	0.236

Kazyak et al. (2021)

MEASURING GENETIC DIVERSITY

Microsatellites

- (Polymorphic loci)
- Observed & expected heterozygosity
- Allelic richness
- F_{IS} & relatedness
- Effective population size (N_e)

SNPs

- Polymorphic loci
- Observed & expected heterozygosity
- (Allelic richness) Nucleotide diversity
- F_{IS} & relatedness
- Effective population size (N_e)

OTHER GENOMIC TOOLS

POPULATION TRANSCRIPTOMICS (RNA-SEQ)

- Gene expression
- Transcriptome: expression pattern of all transcribed elements in the genome
- Measuring differences in copy numbers of genes

RNA-SEQ CHALLENGES

- Need high-quality samples that are carefully preserved
- Gene expression can vary depending on tissue type
- May need to take invasive tissues
- Laboratory practices can result in "gene expression" differences
- Gene expression changes with time (management implications?)

EPIGENETICS

- (Potentially) heritable gene expression changes
- No DNA sequence change
- Modifications to the genome (e.g., DNA methylation)
- Hypomethylation expression turned on
- Hypermethylation expression turned off

Considerations:

- Can vary depending on tissue type
- Indirect link to gene expression
- More stable than RNA-Seq

