

Identifying Decision-Relevant Uncertainty: Expected Value of Information

Michael C. Runge
USGS Patuxent Wildlife Research Center

STAC Quarterly Meeting, 14-15 December 2020

1

Outline

- Types of uncertainty
- The expected value of perfect information (EVPI)
 - Walters' sockeye salmon
- The expected value of partial information (EVXI)
 - Whooping crane restoration
- Discrete vs. continuous uncertainty
- How does this apply to STAC's work?

Uncertainty

3

A brief classification of uncertainty

- Linguistic uncertainty
 - Imprecision in our language, in our goals, in how we specify actions
 - Types: vagueness, context-dependence, ambiguity, underspecificity, indeterminacy of term
- Aleatory uncertainty
 - · Uncertainty or variation that is outside our control or cannot be reduced
 - · E.g., environmental stochasticity
- Epistemic uncertainty
 - Uncertainty that arises from the incompleteness of our knowledge
 - Reducible
 - Arises from: observation error, model uncertainty, subjective judgment, etc.

Epistemic Uncertainty

- Decision-relevant uncertainty
 - Uncertainty that is relevant to the decision maker
 - Resolution of this uncertainty would lead to a different decision (a different allocation of resources)
- Decision-irrelevant uncertainty
 - Uncertainty that might affect the outcome of the decision, but *does not affect* the choice of action

5

EVPI

The Expected Value of Perfect Information

EVXI

The Expected Value of Partial Information

Runge et al. 2011. Which uncertainty? Biol. Cons. 144:1214-1223.

9

USGS

	Eastern Mi Popula			
	Year	Nests	Chicks	
	2001	0	0	
	2002	0	0	
	2003	0	0	
	2004	0	0	
	2005	2	0	
	2006	6	2 (1 fledged)	
	2007	5	0	
	2008	11	0	
	2009	17	2 (0 fledged)	
USGS			≅USGS	S

Hypothesis	Weight	Strategy						Best Outcome	
		Status quo	Kill flies: Bti & DD	Swap older eggs	Rest- ore mead- ows	April DD & burn	No salv- age	No Distur- bance	
Too Young									
Black flies									
Social				Drodio	tod Bon	roductiv			
Nutrient: NNWR			Predicted Reproductive Success						
Nutrient: winter									
Nutrient: both									
Egg Salvage									
Disturbance									
Expected Value									

Hypothesis	Weight	Strategy						Best Outcome	
		Status quo	Kill flies: Bti & DD	Swap older eggs	Rest- ore mead- ows	April DD & burn	No salv- age	No Distur- bance	
Too Young	9.4%	0.25	0.22	0.24	0.24	0.26	0.22	0.18	0.26
Black flies	29.1%	0.07	0.20	0.13	0.12	0.12	0.20	0.10	0.20
Social	11.9%	0.07	0.10	0.11	0.14	0.14	0.11	0.19	0.19
Nutrient: NNWR	22.8%	0.07	0.09	0.14	0.29	0.29	0.10	0.12	0.29
Nutrient: winter	5.9%	0.07	0.09	0.13	0.14	0.16	0.10	0.12	0.16
Nutrient: both	6.6%	0.07	0.09	0.14	0.24	_	Expected Value of Perfect Information 0.047		
Egg Salvage	4.4%	0.09	0.23	0.23	0.15	0.13	9.17	0 11	0.23
Disturbance	10.0%	0.09	0.15	0.25	0.13	0.11	0.11	0.15	0.25
Expected Value		0.091	0.147	0.155	0.185	0.183	0.148	0.129	0.232

Expressing Epistemic Uncertainty

Discrete vs. Continuous Expression

15

VOI & STAC CESR

What does this mean for us?

17

Question 3: Reducibility

- How much can the relevant uncertainty be reduced?
 - Availability of existing data to reduce uncertainty
 - Feasibility of reducing uncertainty (power analysis)
 - Cost of reducing uncertainty

23

Summary

- What's the relevant question for 2025?
 - A post-mortem on whether our predictions were right, or
 - · An analysis of whether we should be taking different actions?
- These are very different framings
 - Which will identify different sources of uncertainty that matter
- Is this a useful framing for how STAC thinks about its work?