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Estuarine science gaps

What are the ‘tipping points’ for estuarine processes?

What are the ramifications of climate change in Chesapeake Bay
responses?

Can we better understand the processes that occur at the land-sea
interface?



Tipping points

Water clarity tipping point

Dissolved oxygen tipping point

SAV tipping point

Tipping points affecting Bay health metrics

Scientific response to tipping points; monitoring, modeling and
research



Ecological “tipping points”
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Threshold response = “tipping point”
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Water clarity tipping point

Boynton et al., 2009
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Understanding and Explaining 30 Years of
Water Clarity Trends in the Chesapeake
Bay’s Tidal Waters




Water clarity report summary

Why did long-term Secchi depth trends decline from the mid-1980s to present day,
despite reductions in both point- and nonpoint- source nutrient loads from the
watershed? SMALL ORGANIC PARTICLES

Why have we seen a different story with light attenuation trends (i.e., water clarity
as Kd, measured with radiometers)? SMALL ORGANIC PARTICLES

Why have mainstem Secchi depth trends begun to improve in the last decade? DON’'T
KNOW

What has more impact on trends in water clarity: internal resuspension of particulate
matter, or sediment inputs from the watershed and local shoreline? IT DEPENDS

What about biology? REALLY IMPORTANT, BUT MAY BE INDIRECT

Current management strategies aim to improve Chesapeake Bay water quality
(including water clarity) by reducing nitrogen, phosphorus, and sediment inputs to
tidal waters (Chesapeake Bay Program 2019). Does this approach target the

appropriate drivers of poor water clarity? YES, BUT MORE TARGETED RESEARCH
NEEDED Keisman et al., 2019



Benthic lighted area sensitive to water clarity
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Chesapeake Bay bathymetry means that small
changes in water clarity will have major impacts
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Dissolved oxygen tipping point

Sediment nitrogen cycling

a) Nitrification vs. Oxygen
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Bottom water oxygen controls denitrification

Denitrification vs. Nitrification
(Yo -1.05+4036X, r=092)
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SAV tipping point: Hysteresis in SAV recovery

o

§4wo

L

E fo40 7950 1960 1570 1580 190 20

312 Secchi vs. N-Load 8

31:2

7 os 6

go.e

§3I§ 4
e

e SAVvs.N-load € 2

2

2 8

> 6 o

5: /\‘ 0 1000 2000 3000 4000 SO000 6000
550 B Nitrogen Load Index (kg/'d)

Nitrogen Load Index (kg/d)

Kemp and Goldman, 2008«

CENTER FOR ENVIRONMENTAL SCIENCE



SAV area (km?)

SAV recovery in the upper Chesapeake Bay
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Nonlinear ecosystem transformations
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AWORKSHOP REPORT

Thresholds in the
Recovery of Eutrophic
Coastal Ecosystems
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Scientific response to tipping points

Monitoring: Careful observations to establish tipping points for
both degradation and restoration trajectories, Frequent water
clarity measurements, Continued bottom water dissolved oxygen
levels and annual SAV surveys

Modeling: Incorporate ecological feedbacks into models,
Extrapolate specific site measurements to Bay-wide forecasting,
model continued nutrient reductions needed to reverse
degradation or enhance restoration

Research: Investigate feedback mechanisms, Test out tipping
points in different salinity regimes, Spatial variability of
nitrification/denitrification, Shift to restoration ecology



Climate change

Observed changes
* Sea level
* Temperature
e Salinity
Anticipated changes
e Dissolved inorganic carbon
* Precipitation patterns
* Tropical storm frequency & intensity
Scientific response to climate change; monitoring, modeling
and research



Climate change
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Observed changes: Sea level rise

Trends in relative sea level at tide gauges around
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Observed changes: Sea level rise

Factors associated with
sea-level rise
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Observed changes: Sea level rise

A one-meter rise in saa level will shift the resonance
response of the Chesapeake Bay toward 24 hours,
thus increasing tidal range in the upper Bay. ™
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Observed changes: Sea level rise
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Observed changes: Sea level rise

Table 1. Individual contributions to global mean sea-level

rise in mm/yr.
Thermal expansion 1.30 1.30
Glaciers 0.65 0.74
Greenland 0.48 0.76
Antarctic 0.25 0.42
Residual 0.37 0.28
Total 3.05 3.50

018

Boesch et al., 2 .
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Observed changes: Temperature

Annual average air temperature in Maryland
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Observed changes: Temperature
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Observed changes: Temperature
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Observed changes Salinity
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Anticipated changes: DIC

OCEAN ACIDIFICATION

HOW WILL CHANGES IN OCEAN CO; absorbed from the atmosphere
CHEMISTRY AFFECT MARINE LIFE?
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Anticipated changes: DIC

Front. Mar. Sci., 06 March 2019 | https://doi.org/10.3389/fmars.2019.00099

Chesapeake Bay Inorganic Carbon:
Spatial Distribution and Seasonal
Variability

ﬂ Jean R. Brodeur?, Baoshan Chen!, Jianzhong Su*?, Yuan-Yuan Xu‘, Najid
Hussain!, K. Michael Scaboo?, ‘;j,{; Yafeng Zhang?, Jeremy M. Testa* and Wei-Jun
Cai”
“[These results] underline the importance of large estuarine
systems for mitigating acidification in coastal ecosystemes,
since riverine chemistry is substantially modified within the
estuary.”



Anticipated changes: Precipitation patterns

Chesapeake Bay Watershed

Observed changes in heavy
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Anticipated changes: Precipitation patterns
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Figure 4. Projected change in the annual mean temperature (a and b) and precipitation {c and d) of the Chesapeake Bay watershed for six
IPCC scenarios (see Figure |} averaged over seven climate models (a and ¢) and the four highest ranked (b and d). From Najjar et al. [2008].




Anticipated changes: Tropical storm
frequency and intensity

Tropical Storm Lee
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Land sea interface
Triblets

Processes

Scientific response to tipping points; monitoring, modeling and
research



Land sea interface: Triblets

Boomer et al., 2019
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Land sea interface: Triblets

Choptank Triblet Catchments
P

Choptank Triblet Catchments
P

Figure 3: Current Chesapeake Bay Program's land-river model segments of the Choptank River in contrast to potential triblet-
based model segmentation strategies, including land areas draining to small estuaries (middle) or based on channelized
waterways connecting uplands to the estuary (right). Note the middle figure maps examples of triblet catchments across the
Chesapeake Bay watershed (Weller and Jordan), in addition to the Choptank River subsystems (left and right panels,
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Land sea interface: Triblets




Scientific response to land sea interface

Monitoring: Develop a practical way to monitor in difficult land
sea interfaces

Modeling: Develop simple estuarine characterizations, good triblet
models will require extensive expertise and time

Research: Develop methodology to establish high priority triblets
for management interventions, field research to determine
responses of triblets to management (natural science) and
stakeholder perceptions (social science)



