Evaluating soil biology: Where do we stand?

Brian Badgley January 23, 2020

COLLEGE OF AGRICULTURE AND LIFE SCIENCES SCHOOL OF PLANT AND ENVIRONMENTAL SCIENCES VIRGINIA TECH.

Outline

Point #1: How has the state of the science changed related to measuring microorganisms in the environment?

Point #2: So what do we measure for biological soil health?

Point #3: What have we learned about soil health by using them?

Outline

Point #1: How has the state of the science changed related to measuring microorganisms in the environment?

Point #2: So what do we measure for biological soil health?

Point #3: What have we learned about soil health by using them?

"We know more about the movement of celestial bodies than about the soil underfoot."

-Leonardo Da Vinci, circa 1500's

What is a Microbiologist? | GetReskilled getreskilled.com

foodscience.com

Bureau of Labor Statistics bls.gov

How to Become a Microbiologist ... environmentalscience.org

Bureau of Labor Statistics bls.gov

How to Become a Microbiologist careergirls.org

What does a Microbiologist do and ... yourfreecareertest.com

Senior Scientist Applied Research ...

What microbiologists do |... 10 Reasons Why Microbiologists Are the ... microbiologysociety.org blog.microbiologics.com

What is Microbiology | Mom Life workingmother.com

How to Become a Microbiologist in the US scholarshipbuddy.com

Bureau of Labor Statistics bls.gov

dreamstime.com

What is Microbiology? - Definition ... study.com

Microbiologist Stock Photos, Pictures ... istockphoto.com

9 Tips for Students Pursuing a Career ... blog.microbiologics.com

What is a Medical Microbiologist? - YouTube youtube.com

Microbiologist Stock Pictures ... gettyimages.com

Pharmaceutical Microbiology pharmamicroresources.com

"Everything is everywhere, but the environment selects"

~Baas-Becking, 1936

Photo credit: NY Times

FIG 2 Bacterial (a) and fungal (b) β -diversity. Microbial β -diversity was visualized with NMDS based on OTU abundance data. Environmental factors (Temp, moisture, available NH₄⁺, and NO₃⁻; gas fluxes of N₂O, CO₂, and CH₄; and TMB and SIR) are fit to the ordination with function envfit in R vegan package. Only significant factors are shown in the figure.

	-

					Functional gene	Mean Abundance (Relative %)	R ²	Slope (± SE)	FDR
1.5					Copper-containing nitrite reductase (EC 1.7.2.1)	85.7 (9.09E-03%)	0.060	-1.04 ± 1.30	0.50
1					NnrU family protein	15.0 (1.59E-03%)	0.35	-1.22 ± 0.52	0.14
0.5					Assimilatory nitrate reductase large subunit (EC:1.7.99.4)	916.5 (9.72E-02%)	0.52	-12.14 ± 3.65	0.067.
0					Cytochrome c-type protein NapC	53.0 (5.62E-03%)	0.12	-0.49 ± 0.43	0.41
-0.5					Ferredoxinnitrite reductase (EC 1.7.7.1)	210.1(2.22E-02%)	0.067	-1.26 ± 1.49	0.50
					Nitrate ABC transporter, ATP-binding protein	211.1 (2.24E-02%)	0.28	-2.87 ± 1.45	0.16
-1					Nitrate ABC transporter, nitrate-binding protein	491.2 (5.21E-02%)	0.27	-6.84 ± 3.55	0.16
					Nitrate ABC transporter, permease protein	198.7 (2.11E-02%)	0.31	-2.69 ± 1.27	0.16
					Nitrate reductase cytochrome c550-type subunit	17.7 (1.88E-03%)	0.30	-0.34 ± 0.17	0.16
					Nitrate/nitrite transporter	171.5 (1.82E-02%)	0.35	-13.44 ± 5.84	0.14
				Nitrite reductase probable electron transfer 4Fe-S subunit (EC 1.7.1.4)	17.4 (1.85E-03%)	0.17	0.51 ± 0.36	0.31	
				Nitrite transporter from formate/nitrite family	82.3 (8.73E-03%)	0.66	-2.46 ± 0.56	0.028*	
				Periplasmic nitrate reductase precursor (EC 1.7.99.4)	275.8 (2.93E-02%)	0.19	-3.41 ± 2.20	0.26	
				Respiratory nitrate reductase alpha chain (EC 1.7.99.4)	205.0 (2.18E-02%)	0.27	-3.90 ± 2.02	0.16	
					Respiratory nitrate reductase beta chain (EC 1.7.99.4)	102.0 (1.08E-02%)	0.41	-2.20 ± 0.84	0.11
					Respiratory nitrate reductase gamma chain (EC 1.7.99.4)	26.5 (2.81E-03%)	0.42	-1.06 ± 0.39	0.11
					Response regulator NasT	76.5 (8.11E-03%)	0.43	-1.44 ± 0.53	0.11
					Nitrite reductase [NAD(P)H] large subunit (EC 1.7.1.4)	792.1 (8.40E-02%)	0.63	-19.2 ± 4.68	0.028*
6	12	22	31	UM					

Fig. 4. The variations of microbial functional groups, genera and functional genes involved in N cycle over chronosequence ages (chronosequence ages 6, 12, 22 and 31: years since reforestation when sampled; UM: nearby unmined sites as control). (a) AOB, NOB and major genera of AOB and NOB over chronosequence ages (relative abundance > 0.005%). (b) Major functional genes involved in N cycle over chronosequence ages (relative abundance > 0.001%). The heatmap shows the age variations. The key shows the z-scores of the relative abundances. The relative abundance, variance explained (R²), regression slope and false discovery rate age variations. The key shows the z-scores of the relative abundances. The relative abundances, variation (FDR) of the linear regression with chronosequence age were shown in the table (• indicates FDR < 0.1, * indicates FDR < 0.05 and ** indicates FDR < 0.01). Sun and Badgley (2019)

	Genus	Mean Abundance	R2	Slope (+ SE)	EDR
		(Relative %)	0.02		01010000
1.5	Methylocella	7.13E3 (0.45%)	0.76	107.3 ± 18.9	0.00131**
1	Methylocystis	2.62E3 (0.17%)	0.78	57.6 ± 9.7	0.00131**
0.5 Methanotroph	Methylosinus	3.05E3 (0.19%)	0.73	43.9 ± 8.5	0.00176**
	Methylobacter	1.21E3 (0.076%)	0.56	18.5 ± 5.2	0.00963**
0	Methylococcus	2.68E3 (0.17%)	0.49	32.8 ± 10.5	0.0159*
-0.	Mothenothermohaster	1.4552 (0.00049())	0.70	2 01 + 0 82	0.00242**
-1	Methanococcus	1.09E2 (0.0069%)	0.077	0.60 ± 0.66	0.381
	Methanoculleus	96.7 (0.0061%)	0.62	1.88 ± 0.46	0.00486**
Methanogen	Methanospirillum	1.31E2 (0.0082%)	0.47	1.77 ± 0.59	0.0179*
	Methanoregula	2.00E2 (0.013%)	0.64	3.86 ± 0.91	0.00449**
	Methanosphaerula	1.26E2 (0.0080%)	0.26	1.85 ± 0.99	0.108
	Methanococcoides	1.16E2 (0.0073%)	0.12	1.01 ± 0.85	0.285
	Methanosarcina	9.25E2 (0.058%)	0.54	14.6 ± 4.3	0.0111*

b						Functional gene	Mean Abundance	R ²	Slope (± SE)	FDR	
						Methane monooxygenase component A alpha chain (EC 1.14.13.25)	133.1 (1.41E-02%)	0.12	-1.13 ± 0.96	0.57	
1						Methane monooxygenase component A beta chain (EC 1.14.13.25)	29.3 (3.11E-03%)	0.11	0.48 ± 0.43	0.57	
0.5		Methane monooxygenase component C (EC 1.14.13.25)	26.5 (2.81E-03%)	0.029	0.23 ± 0.42	0.65					
0.0						Methane monooxygenase regulatory protein B	12.4 (1.32E-03%)	0.086	0.15 ± 0.16	0.59	
0						Nitric oxide -responding transcriptional regulator NnrR (Crp/Fnr family)	15.9 (1.69E-03%)	0.022	0.11 ± 0.23	0.65	
-0.5						Nitric oxide reductase activation protein NorD	16.8 (1.78E-03%)	0.16	-0.47 ± 0.34	0.57	
						Nitric oxide reductase activation protein NorQ	45.9 (4.87E-03%)	0.021	-0.14 ± 0.30	0.65	
						Nitric-oxide reductase (EC 1.7.99.7), quinol-dependent	120.2 (1.28E-02%)	0.079	2.38 ± 2.57	0.59	
						Nitric-oxide reductase subunit B (EC 1.7.99.7)	16.9 (1.79E-03%)	0.13	-0.39 ± 0.32	0.57	
				1.1		Nitrous oxide reductase maturation protein NosR	15.3 (1.62E-03%)	0.042	-0.21 ± 0.32	0.65	
						Nitrous-oxide reductase (EC 1.7.99.6)	14.4 (1.52E-03%)	0.32	1.14 ± 0.53	0.57	
	6	12	22	31	UM	le la					

Fig. 5. The variations of microbial genera and functional genes involved in greenhouse gas emission over chronosequence ages (chronosequence ages 6, 12, 22 and 31: years since reforestation when sampled; UM: nearby unmined sites as control). (a) Major methanotrophs and methanogens over chronosequence ages (relative abundance > 0.005%). (b) Major functional genes involved in methane and nitrous oxide production over chronosequence ages (relative abundance > 0.001%). The heatmap shows the age variations. The key shows the z-scores of the relative abundances. The relative abundance, variance explained (R^2), regression slope and false discovery rate (FDR) of the linear regression with chronosequence age were shown in the table (• indicates FDR < 0.1, * indicates FDR < 0.05 and ** indicates FDR < 0.01).

Outline

Point #1: How has the state of the science changed related to measuring microorganisms in the environment?

Point #2: So what do we measure for biological soil health?

Point #3: What have we learned about soil health by using them?

Comprehensive Assessment of Soil Health

The Cornell Framework

B.N. Moebius-Clune, D.J. Moebius-Clune, B.K. Gugino, O.J. Idowu, R.R. Schindelbeck, A.J. Ristow, H.M. van Es, J.E. Thies, H.A. Shayler, M.B. McBride, K.S.M. Kurtz, D.W. Wolfe, and G.S. Abawi

Third Edition

Cornell University

May 2019

Soil Health Technical Note No. 450-03

Recommended Soil Health Indicators and Associated Laboratory Procedures

Common Biological Indicators

"Food" Sources:

- Soil organic matter/carbon
- permanganate oxidizable carbon (readily available C)
- soil protein (readily available N)

General Microbial Activity:

- Carbon mineralization
- Nitrogen mineralization
- Respiration assays

Common Biological Indicators

Enzymatic assays:

- β-glucosidase: cellulose degradation
- N-acetyl-β-D-glucosaminidase: chitin degradation
- Phosphomonoesterases: P mineralization
- Arylsulfatase: S mineralization

Diversity:

- Phospholipid fatty acid analysis recommended now
- DNA sequencing recommended for archiving if possible

Outline

Point #1: How has the state of the science changed related to measuring microorganisms in the environment?

Point #2: So what do we measure for biological soil health?

Point #3: What have we learned about soil health by using them?

Stewart et al. (2018)

*Neither *total* microbial biomass nor fungal:bacterial ratios were significantly different with and without cover crops

What about water availability?

Moyano et al. (2012)

What about water availability?

- Soil moisture availability is a key determinant of microbial activity
 - Too little = moisture stress
 - Too much = decreased oxygen availability

- Most microbial activity assays are determined at the bench scale on dried soils re-wetted to controlled moisture conditions
 - 50-60% of field capacity
 - Saturation for enzyme assays

Conclusions

Point #1: DNA sequencing has revolutionized soil microbiology but the information provided has not been linked to soil health metrics

Point #2: Commonly recommended indicators are primarily related to SOM content and activity, but methods still vary

Point #1: Biological indicators can certainly be responsive to soil management changes it's generally assumed that "more is better"; but consistency and benchmarking is tricky across studies and regions

References

Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow AJ. 2016. Comprehensive assessment of soil health: The Cornell Framework Manual 3.1, Cornell University, Ithaca, NY.

Moyano, F. E., Vasilyeva, N. A., Bouckaert, L., Cook, F., Craine, J. M., Don, A., ... & Katterer, T. (2012). The moisture response of soil heterotrophic respiration: interaction with soil properties. *Biogeosciences*, *9*(3), 1173-1182.

Stewart, R. D., Jian, J., Gyawali, A. J., Thomason, W. E., Badgley, B. D., Reiter, M. S., & Strickland, M. S. (2018). What we talk about when we talk about soil health. *Agricultural & Environmental Letters*, *3*(1).

Strickland, M. S., Thomason, W. E., Avera, B., Franklin, J., Minick, K., Yamada, S., & Badgley, B. D. (2019). Short-Term Effects of Cover Crops on Soil Microbial Characteristics and Biogeochemical Processes across Actively Managed Farms. *Agrosystems, Geosciences & Environment*, *2*(1).

Stott DE. 2019. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03. USDA Natural Resources Conservation Service, Washington, DC.

Sun, S., Li, S., Avera, B. N., Strahm, B. D., & Badgley, B. D. (2017). Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. *Appl. Environ. Microbiol.*, *83*(14), e00966-17.

Sun, S., & Badgley, B. D. (2019). Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. *Soil Biology and Biochemistry*, *135*, 163-172.

Acknowledgements

• Previous students: Shan Sun, Bethany Avera, Josh Franklin

• Collaborating Labs: Mike Strickland, Brian Strahm, Ryan Stewart, Wade Thomason

• Funding: USDA, NRCS, American Farm Trust