Evaluating soil biology: Where do we stand?

Brian Badgley
January 23, 2020
Outline

Point #1: How has the state of the science changed related to measuring microorganisms in the environment?

Point #2: So what do we measure for biological soil health?

Point #3: What have we learned about soil health by using them?
Outline

Point #1: How has the state of the science changed related to measuring microorganisms in the environment?

Point #2: So what do we measure for biological soil health?

Point #3: What have we learned about soil health by using them?
“We know more about the movement of celestial bodies than about the soil underfoot.”

-Leonardo Da Vinci, circa 1500’s
“Everything is everywhere, but the environment selects”

~Baas-Becking, 1936
FIG 2 Bacterial (a) and fungal (b) β-diversity. Microbial β-diversity was visualized with NMDS based on OTU abundance data. Environmental factors (Temp, moisture, available NH₄⁺, and NO₃⁻; gas fluxes of N₂O, CO₂, and CH₄; and TMB and SIR) are fit to the ordination with function envfit in R vegan package. Only significant factors are shown in the figure.
Sun and Badgley (2019)

Fig. 4. The variations of microbial functional groups, genera and functional genes involved in N cycle over chronosequence ages (chronosequence ages 6, 12, 22 and 31: years since reforestation when sampled; UM: nearby unmined sites as control). (a) AOB, NOB and major genera of AOB and NOB over chronosequence ages (relative abundance > 0.005%). (b) Major functional genes involved in N cycle over chronosequence ages (relative abundance > 0.001%). The heatmap shows the age variations. The key shows the z-scores of the relative abundances. The relative abundance, variance explained (R^2), regression slope and false discovery rate (FDR) of the linear regression with chronosequence age were shown in the table (* indicates FDR < 0.1, * indicates FDR < 0.05 and ** indicates FDR < 0.01).
Fig. 5. The variations of microbial genera and functional genes involved in greenhouse gas emission over chronosequence ages (chronosequence ages 6, 12, 22 and 31; years since reforestation when sampled; UM: nearby unmined sites as control). (a) Major methanotrophs and methanogens over chronosequence ages (relative abundance > 0.005%). (b) Major functional genes involved in methane and nitrous oxide production over chronosequence ages (relative abundance > 0.001%). The heatmap shows the age variations. The key shows the z-scores of the relative abundances. The relative abundance, variance explained (R^2), regression slope and false discovery rate (FDR) of the linear regression with chronosequence age were shown in the table (• indicates FDR < 0.1, * indicates FDR < 0.05 and ** indicates FDR < 0.01).

Sun and Badgley (2019)
Outline

Point #1: How has the state of the science changed related to measuring microorganisms in the environment?

Point #2: So what do we measure for biological soil health?

Point #3: What have we learned about soil health by using them?
Comprehensive Assessment of Soil Health
The Cornell Framework

Soil Health
Technical Note No. 450-03

Recommended Soil Health Indicators and Associated Laboratory Procedures

Third Edition
Common Biological Indicators

“Food” Sources:

• Soil organic matter/carbon
• permanganate oxidizable carbon (readily available C)
• soil protein (readily available N)

General Microbial Activity:

• Carbon mineralization
• Nitrogen mineralization
• Respiration assays

Moebius-Clune et al. (2016), Stott et al. (2019)
Common Biological Indicators

Enzymatic assays:

- β-glucosidase: cellulose degradation
- N-acetyl-β-D-glucosaminidase: chitin degradation
- Phosphomonoesterases: P mineralization
- Arylsulfatase: S mineralization

Diversity:

- Phospholipid fatty acid analysis - recommended now
- DNA sequencing - recommended for archiving if possible

Moebius-Clune et al. (2016), Stott et al. (2019)
Outline

Point #1: How has the state of the science changed related to measuring microorganisms in the environment?

Point #2: So what do we measure for biological soil health?

Point #3: What have we learned about soil health by using them?
Stewart et al. (2018)

(b) 1 year after cover crop

(c) 2 or 3 years after cover crop

Response indicators reported in the literature

Stewart et al. (2018)
Neither total microbial biomass nor fungal:bacterial ratios were significantly different with and without cover crops
What about water availability?

Varying clay content

Varying organic matter

Varying bulk density

Moyano et al. (2012)
What about water availability?

• Soil moisture availability is a key determinant of microbial activity
 • Too little = moisture stress
 • Too much = decreased oxygen availability

• Most microbial activity assays are determined at the bench scale on dried soils re-wetted to controlled moisture conditions
 • 50-60% of field capacity
 • Saturation for enzyme assays
Conclusions

Point #1: DNA sequencing has revolutionized soil microbiology but the information provided has not been linked to soil health metrics.

Point #2: Commonly recommended indicators are primarily related to SOM content and activity, but methods still vary.

Point #1: Biological indicators can certainly be responsive to soil management changes it’s generally assumed that “more is better”; but consistency and benchmarking is tricky across studies and regions.
References

Acknowledgements

• Previous students: Shan Sun, Bethany Avera, Josh Franklin

• Collaborating Labs: Mike Strickland, Brian Strahm, Ryan Stewart, Wade Thomason

• Funding: USDA, NRCS, American Farm Trust