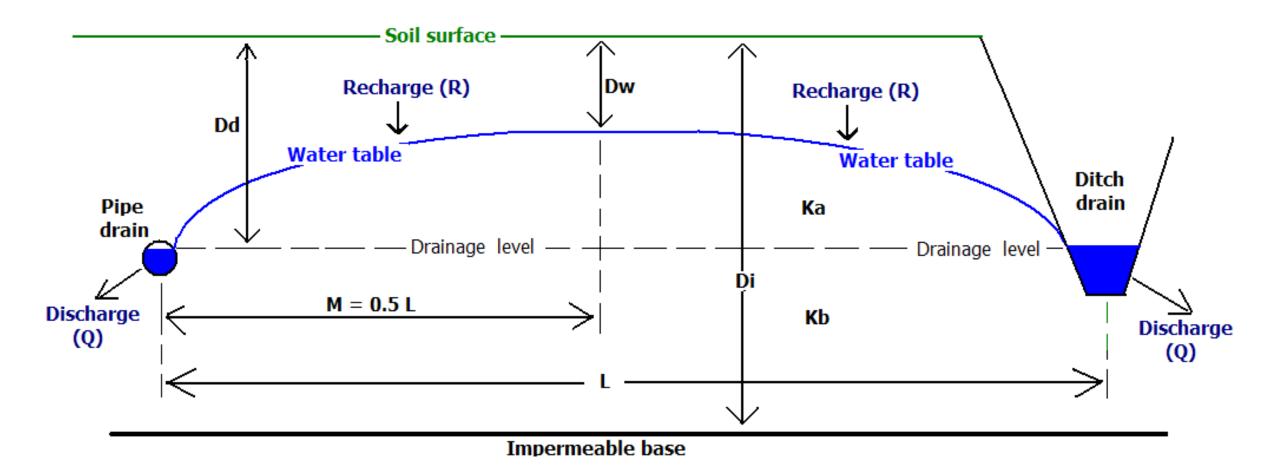
Watershed Health to In-Field and Edge-of-Field Water Management

Convening Event

January 23 – January 24, 2020 | Morgantown, WV Erickson Alumni Center, West Virginia University

Chesapeake Bay Program Science. Restoration. Partnership. Current Research Challenges in Drainage Management

Chandra Madramootoo Bioresource Engineering Department McGill University and Visiting Scholar in Water and Food Security MIT

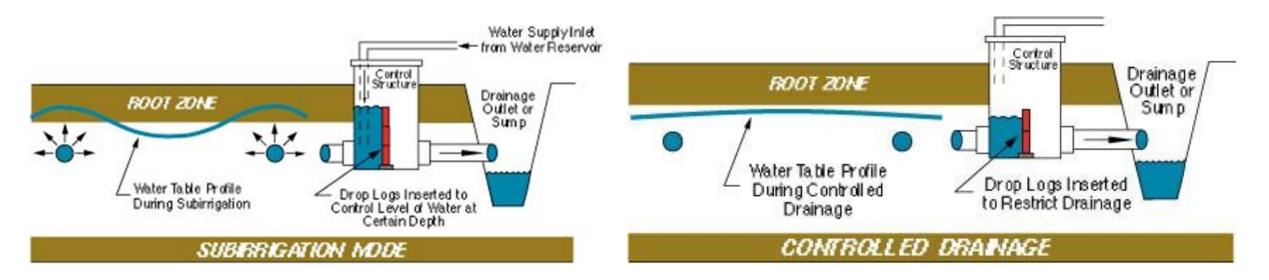

Focus has historically been on drainage improvements for:

- 1. Removal of excess soil water in the spring
- 2. Planting earlier to take advantage of the shorter growing season
- 3. Improved field machine trafficability during the growing season
- 4. Improved soil aeration
- 5. Higher crop yields

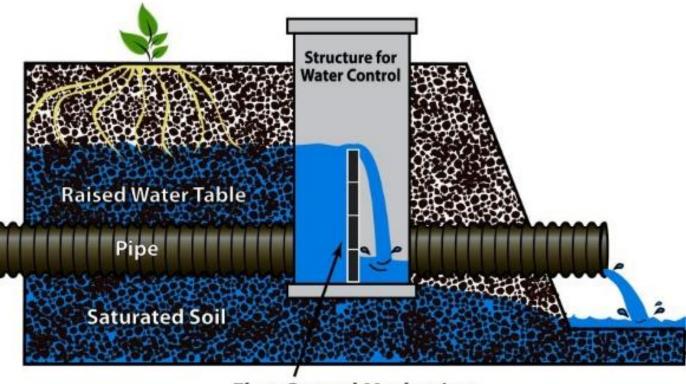
High precipitation in the summer growing season

Geometry subsurface drainage system by pipes or ditches

D = depth K = hydraulic conductivity L = Drain spacing



Drainage water quantity and water quality



Water Table Control

- **Solution Reduce** water inputs for irrigation and therefore conserve water usage
- **Solution** Reduce drainage outflows
- **Solution** Lower amounts of N and P in the drainage water
- Increased crop yield

Flow Control Mechanism

Table 2

Summary of measured effects of drainage water management (DWM) on crop yields.

Reference	Location	Years observed	Number of sites	Crop	Effects of DWM on crop yield
Tan et al. 1998	Ontario	2	1	Soybean	No effect
Drury et al. 2009	Ontario	2	1	Corn	No effect
		2	1	Soybean	No effect
Wesstrom and Messing 2007	Sweden	4	1	Cereals	2% to 18% increase
Fausey 2005	Ohio	5	1	Corn	No effect
	Ohio	5	1	Soybean	No effect
Poole et al. 2011	North Carolina	6	2	Corn	11% increase
	North Carolina	5	2	Wheat	No effect
	North Carolina	6	2	Soybean	10% increase
Delbecq et al. 2012	Indiana	5	2	Corn	5.8% to 9.8% increase
Jaynes 2012	lowa	2	1	Corn	No effect
	Iowa	2	1	Soybean	8% increase
Helmers et al. 2012	lowa	4	1	Corn	Reduced yield
	Iowa	4	1	Soybean	No effect
Cooke and Verma 2012	Illinois	2	4	Corn	No effect
		2	3	Soybean	No effect
Ghane et al. 2012	Ohio	1 to 2	7	Corn	1% to 19% increase
					in 6 of 9 observations
		1 to 2	7	Soybean	1% to 7% increase
					in 7 of 11 observations

	Precipitation ^[a]	Yield (N	/Ig ha ⁻¹) ^[b]	Higher	Difference		
Year	(mm)	FD	CD-SI	Yield	in Yields (%)	References	
1993	482.4	8.0	8.2	CD-SI	2.5	Zhou et al. (2000)	
1994	443.9	8.9	9.4	CD-SI	5.6	Zhou et al. (2000)	
1995	479.3	11.1	11.4	CD-SI	2.8	Maii $a t a 1$ (2000)	
1996	500.9	6.8	7.3	CD-SI	6.9	Mejia et al. (2000)	
1998	618.2	8.8	6.6	FD	25.0	Madramaataa at al. (2001	
1999	482.0	9.7	9.5	FD	1.7	Madramootoo et al. (2001	
2001	365.4	6.9	9.4	CD-SI	36.2	Stampfli and Madramooto	
2002	476.2	7.6	10.1	CD-SI	32.9	(2006)	
2008	431.9	12.5	12.3	FD	2.2	This study	
2009	461.7	11.3	10.4	FD	8.0	This study	

Table 7. Comparisons of grain corn yields in FD and CD-SI scenarios.

^[a] Precipitation from May to September; 30-year average precipitation of the growing season at the site was 474.4 mm.

^[b] FD = free or conventional drainage plots; CD-SI = controlled drainage plots with subirrigation.

A. K. Singh, C. A. Madramootoo, D. L. Smith

Vol. 57(5): 1319-1328 © 2014 American Society of Agricultural and Biological Engineers

Copyright © 2012 Soil and Water Conservation Society. All rights reserved. Journal of Soil and Water Conservation 67(6):167A-172A www.swcs.org

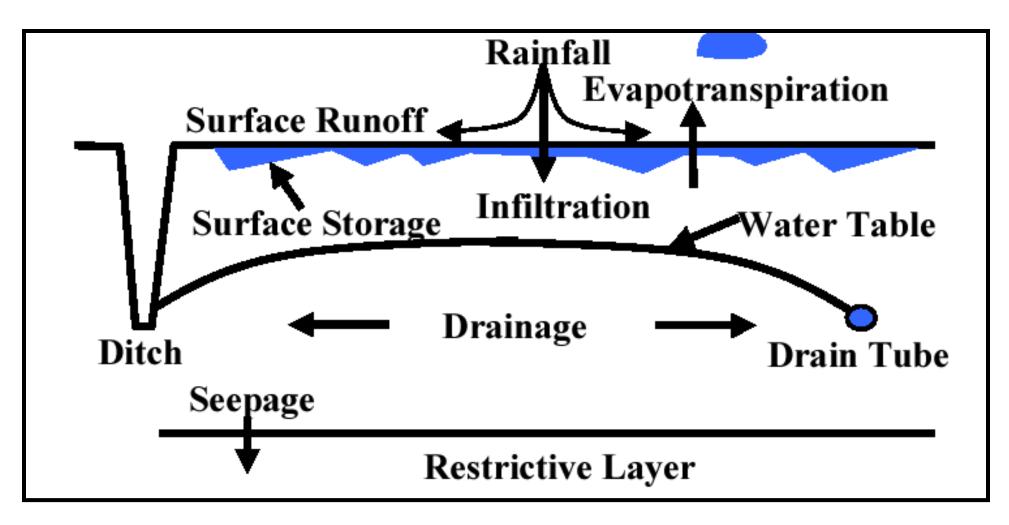
Table 1

Summary of results of field studies of effectiveness of drainage water management in reducing drainage volumes and nitrogen loads (modified from Skaggs et al. 2010).

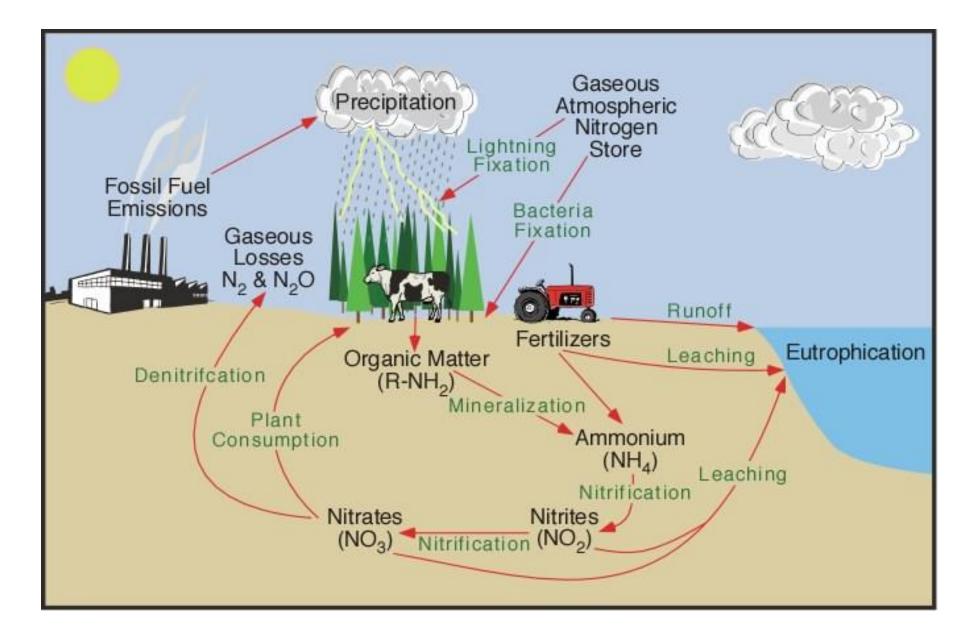
Reference	Location	Soil	Years observed	Area (ha)	Drain spacing (m)	Drain depth (m)	Control depth* (m)	Percent drainage	Reduction nitrogen loss
Gilliam et al. 1979	North Carolina	Portsmouth sandy loam	3	5 to 16	30 and 80	1.2	0.3 to 0.5	50	50
	North Carolina	Goldsboro sandy loam	3	3	30	1	0.3	85	85
Evans et al. 1989	North Carolina	Ballanhack sandy loam	2	4	18	1	0.6	56	56
	North Carolina	Wasda muck	2	4	100	1.2	0.6	51	56
	North Carolina	Wasda muck	2	4	18	1	0.6	17	18
Lalonde et al. 1996	Ontario	Bainesville silty loam	2	0.63	18.3	1	0.75	49	69
							0.5	80	82
Breve et al. 1997†	North Carolina	Portsmouth	1.2	1.8	22	1.2	0.4 to 0.5	16	20
Tan et al. 1998	Ontario	Brookston clay loam	2	2.2	9.3	0.65	0.3	20	19
Gaynor et al. 2002‡	Ontario	Brookston clay loam	2	0.1	7.5	0.6	0.3	16	
Drury et al. 2009§	Ontario	Brookston clay loam	4	0.1	7.5	0.6	0.3	29	31 to 44
Wesstrom and Messing 2007	Sweden	Loamy sand	4	0.2	10	1	0.2 to 0.4	80	80
Fausey 2005	Ohio	Hoytville silty clay	5	0.07	6	0.8	0.3	41	46
Jaynes 2012	Iowa	Kossuth/Ottosen	4	0.46	36	1.2	0.6	18	21
Helmers et al. 2012	Iowa	Taintor/Kalona	4	1.2 to 2.4	18	1.2	0.3	37	36
Adeuya et al. 2012	Indiana	Rensselaer	2	3	21	1	0.15 to 0.6	19	23
	Indiana	Rensselaer	2	6 to 9	43				18
Cooke and Verma 2012	Illinois	Drummer	2	15	30	1.15	0.15	44	51
		Drummer/Dana	1 to 2#	8.1	15	1.15	0.15	44	52
		Orion Haymond	1 to 2#	5.7	18 to 21	1.15	0.15	89	79
		Patton/Montgomery	1 to 2#	16.2	12	0.85	0.15	38	73

* Control typically removed during seedbed preparation, planting, and harvesting periods.

† Controlled drainage (CD) during the growing season only. CD reduced subsurface drainage volume by 16%; Nitrogen loss from subsurface drain + runoff by 20%.


‡ CD reduced subsurface drainage by 35%, increased surface runoff by 28%, and reduced total outflow by 16%. Nitrogen results were not reported and effects on pesticide loss were reported.

§ CD reduced subsurface drainage by 29%, increased surface runoff by 38%, and reduced total outflow by 11%.


||CD reduced nitrogen loss by 44% for recommended nitrogen application rates and by 31% for elevated nitrogen rates.

Drainage volume measured for two years and nitrogen losses measured for one year for these locations.

- Where does the N go?
- What happens with the retained water?

Nitrogen Cycle

Cover crop†	Water-table management‡	2000	2001	2003	2004	2005	5-yr§ avg.
				Soil inor	rganic N		
	-			kg N	ha-1		
NCC	UTD	41.6 (4.1)¶	25.8 (1.7)	33.2 (2.7)	43.7 (5.3)	64.5 (6.6)	41.8 (2.0)
	CDS	42.4 (2.7)	28.2 (1.6)	35.8 (2.3)	41.7 (4.0)	47.4 (6.3)	38.8 (3.7)
СС	UTD	47.2 (3.6)	29.8 (1.1)	39.0 (1.0)	48.8 (6.3)	63.0 (2.9)	45.6 (0.7)
	CDS	43.3 (5.3)	26.8 (0.1)	37.3 (2.0)	42.1 (1.0)	66.9 (13.4)	43.3 (1.5)
				Soil inorgar	nic N (<i>P</i> > F)		
СС	-	ns#	ns	ns	ns	ns	ns
WTM		ns	ns	ns	ns	ns	ns
$CC \times WTM$		ns	*	ns	ns	ns	ns

Table 3. Soil inorganic N contents in the 0- to 50-cm depths at harvest with cover crop and water-table management treatments.

* Significant at the 0.05 probability level.

+ CC, cover crop; NCC, no cover crop; WTM, water-table management.

‡ CDS, controlled drainage-subirrigation; UTD, unrestricted tile drainage.

§ Data not available for 2002.

¶ Numbers in parentheses are SE.

Not significant at the p = 0.05 probability level.

C. F. Drury,* C. S. Tan, T. W. Welacky, W. D. Reynolds, T. Q. Zhang, T. O. Oloya, N. B. McLaughlin, and J. D. Gaynor

J. Environ. Qual. 43:587-598 (2014)

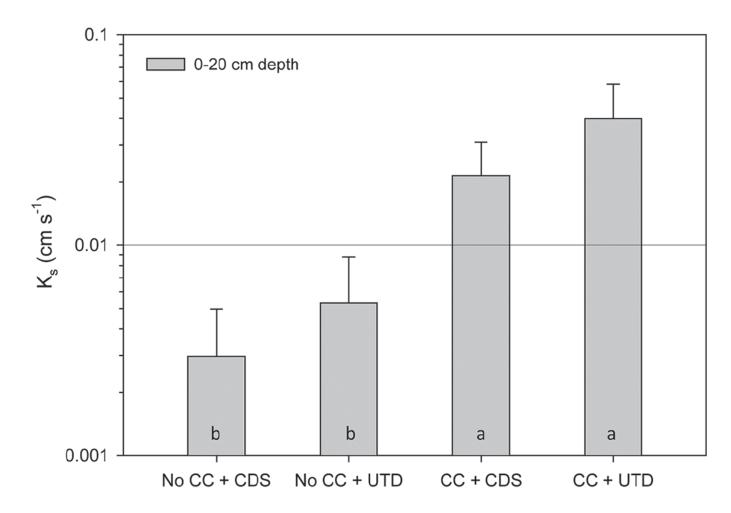
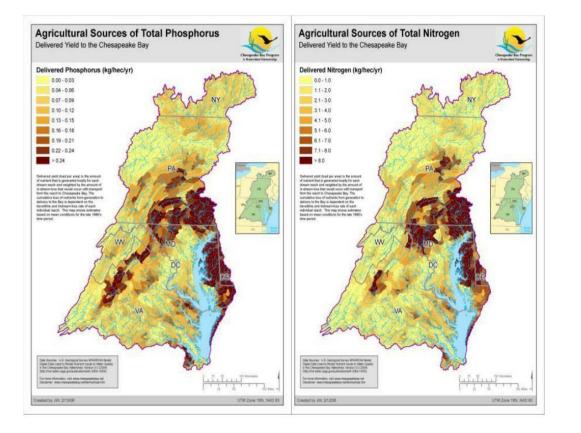
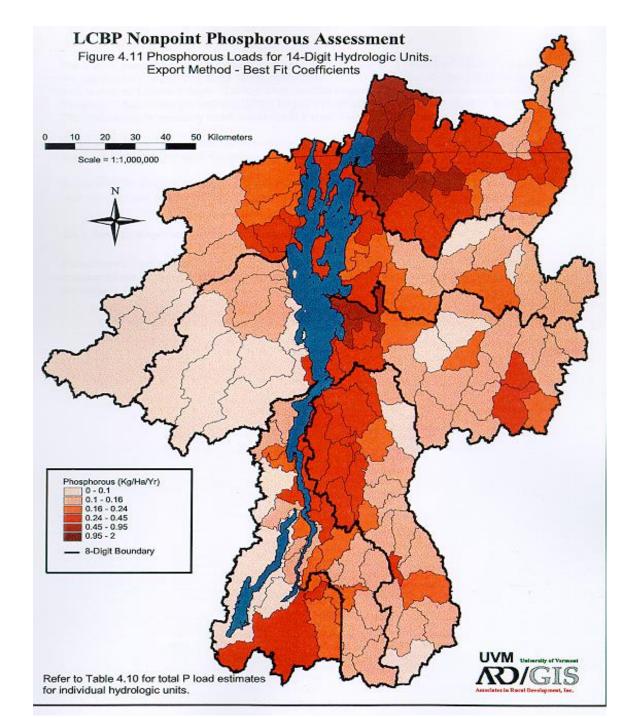



Fig. 2. Near-surface (0- to 20-cm depth) saturated soil hydraulic conductivity (K_s) for factorial combination of winter wheat cover crop (CC) versus no winter wheat cover crop (NCC) and controlled tile drainage with subsurface irrigation (CDS) versus traditional unrestricted tile drainage (UTD). Bars (means) labeled with the same lowercase letter are not significantly different according to the Tukey's HSD test (P < 0.05). The vertical T-bars are SE (n = 20).

J. Environ. Qual. 43:587–598 (2014)

C. F. Drury,* C. S. Tan, T. W. Welacky, W. D. Reynolds, T. Q. Zhang, T. O. Oloya, N. B. McLaughlin, and J. D. Gaynor



•Inorganic Fertilizers contain nutrients, primarily phosphorous and nitrogen.

•Since many tributaries flow near actively farmed land, inorganic fertilizer runoff tends to be present in the streams and eventually the bay.

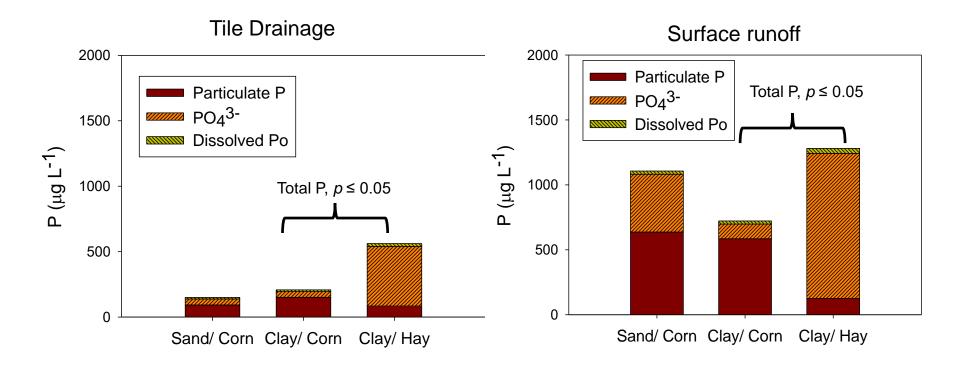
•These fertilizers, once in the waters, also favor algae growth and can cause algae blooms.

•The danger of inorganic fertilizers in the bay are magnified by the Bay's shallow waters

Site Description

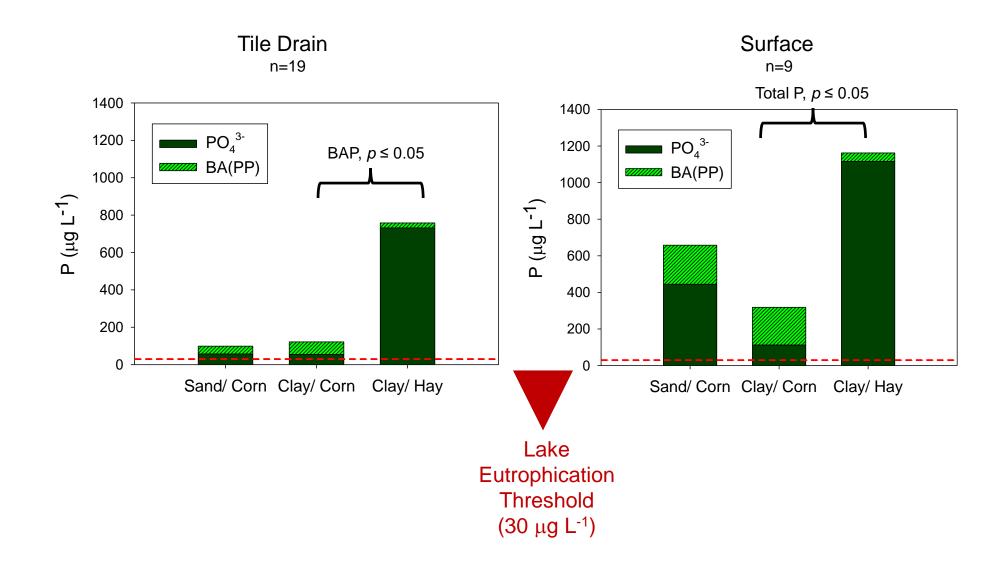
Field	Area	Soil Type
1	7 ha	Sandy Clay Loam
2	6 ha	Sandy Loam
3	2 ha	Clay Loam
4	3 ha	Sandy Clay Loam

Field	Drainage	Crops
1	Surface + Tile	Corn, Soybeans
2	Surface + Tile	Alfalfa, Corn
3	Only Surface	Corn, Cereals
4	Only Surface	Hay, Pasture



Site Description

Field	Soil Test P (kg/ha)	% P sat
1	114	5.3
2	373	22.0
3	38	1.6
4	72	4.0



Hypothesis: Soil texture has an influence on the P speciation

No soil texture effect.

But cultural practices effect => Effect of topsoil management

Site/Year	Avgerage Subsurface <i>TP conc.</i> (<i>mg/L</i>)	Average Surface runoff TP conc. (mg/L)	Ratio SS:SRO
Site 1 – 00/01	0.060	0.312	5.2
Site 1 – 01/02	0.063	2.146	34.3
Site 1 – 02/03	0.073	0.780	10.4
Site 2 – 00/01	0.104	0.196	1.9
Site 2 – 01/02	0.365	1.681	4.6
Site 1 – 02/03	0.213	1.758	8.8
		Average =	10.8

Site/Year	TP Load (kg/ha)	SS drains (% of load)	SS drains (% of H20)	
Site 1 – 01/02	0.81	29%	93%	398 mm
Site 1 – 02/03	0.77	34%	84%	415 mm
Site 2 – 00/01	0.27	37%	52%	184 mm
Site 2 – 01/02	1.95	63%	89%	381 mm
Site 2 – 02/03	1.79	38%	84%	352 mm
AVERAGE	1.12	40%	80%	

Average Annual P load

Annual P loss (kg/ha)	Soil Test P (% P sat) Kg/ha
0.79 kg/ha	360 (23%)
1.34 kg/ha	140 (7%)
	(kg/ha) 0.79 kg/ha

See following references for complete results:

Gombault, C., C.A. Madramootoo, A.R. Michaud, I. Beaudin, M.F. Sottile, M. Chikhaoui, F.F. Ngwa. 2015. Impacts of climate change on nutrient losses from the Pike River watershed of southern Québec. Canadian Journal of Soil Science, 95(4):337-358.

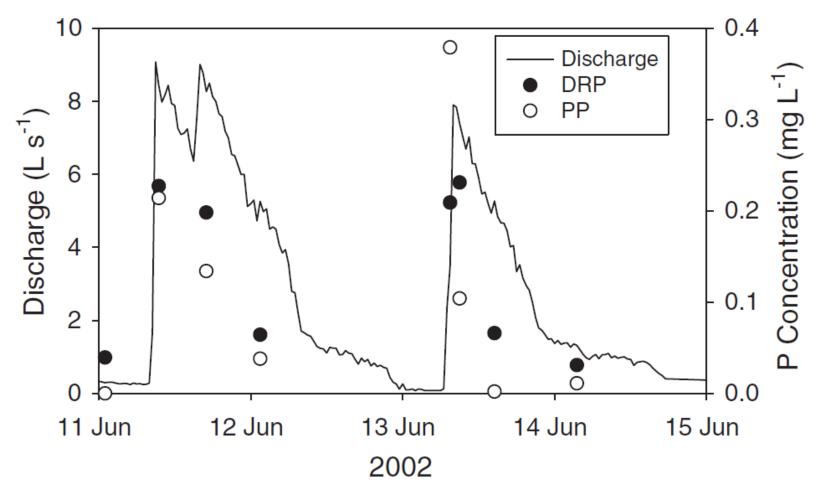
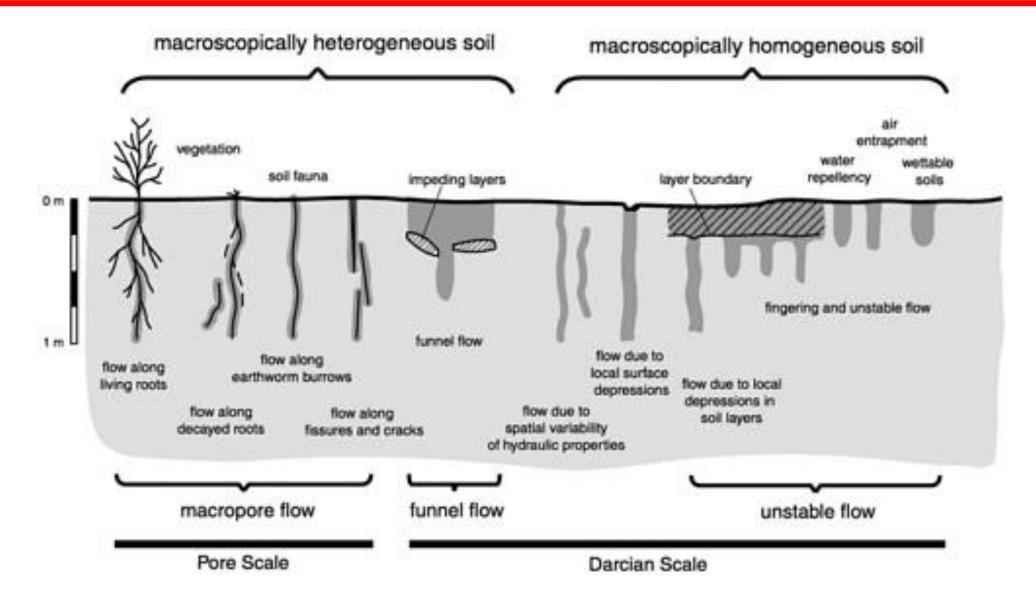
Gombault, C., M-F. Sottile, F.F Ngwa, C.A. Madramootoo, A.R Michaud, I. Beaudin and M. Chikhaoui, 2014. Modelling climate change impacts on the hydrology of an agricultural watershed in southern Québec. Canadian Water Resources Journal. Doi.org/10.1080/07011784.2014.985509.

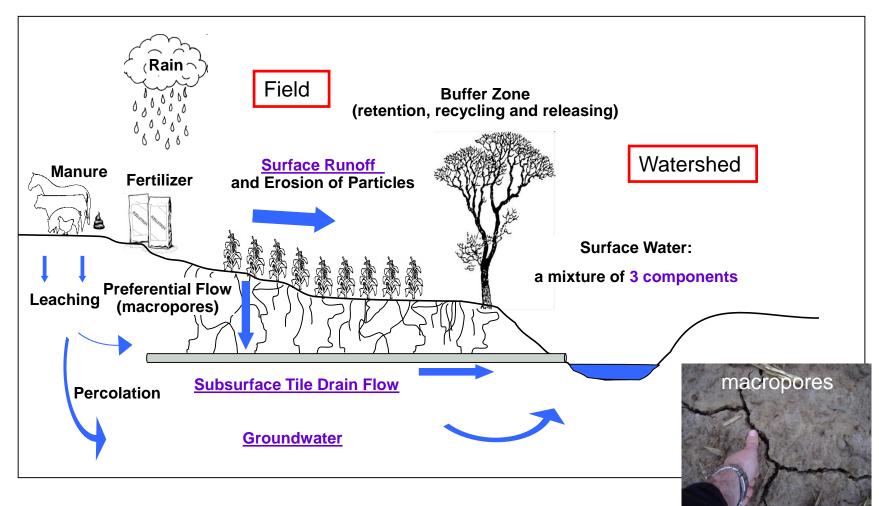
Eastman, M., A. Gollamudi, N. Stampfli, C.A. Madramootoo and A. Sarangi. 2010. Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada. Agricultural Water Management, 97(5):596-604.

Gollamudi, A., C.A. Madramootoo and P. Enright. 2007. Water quality modeling of two agricultural fields in Southern Quebec using SWAT. Transactions of the American Society of Agricultural and Biological Engineers, 50(6): 1973-1980.

Michaud, A.R., Beaudin, I., Deslandes, J., Bonn, F. and C.A. Madramootoo. 2007. SWAT-predicted influence of different landscape and cropping system alterations on phosphorus mobility within the Pike River watershed of south-western Quebec. Can. J. Soil Sci. 87:329-344.

Deslandes, J., I. Beaudin, A. Michaud, F. Bonn and C. A. Madramootoo. 2007. Influence of Landscape and Cropping System on Phosphorus Mobility within the Pike River Watershed of Southwestern Quebec: Model Parametrization and Validation. Canadian Water Resources Journal, 32(1):21-42.

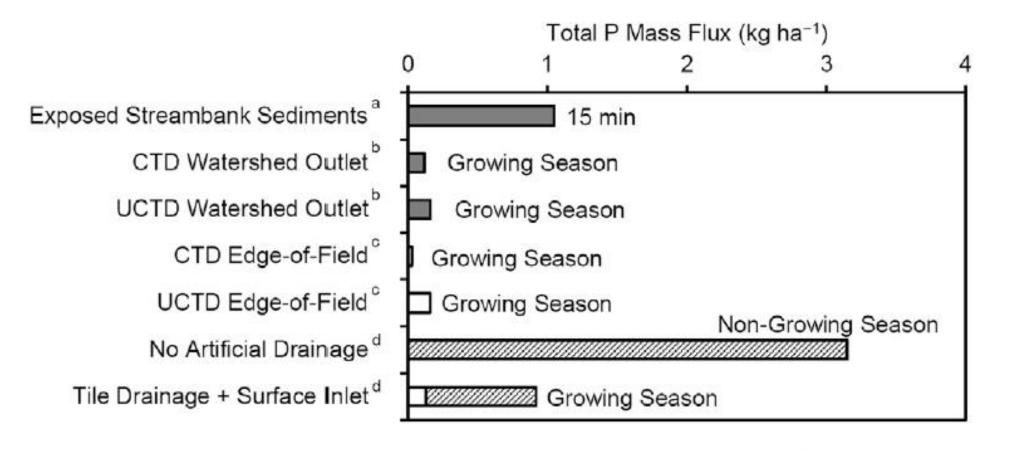




Fig. 7. Discharge, particulate phosphorus (PP), and dissolved reactive phosphorus (DRP) concentration from an agricultural tile drain in the Big Ditch watershed showing two successive rain events during June 2002.

L. E. Gentry,* M. B. David, T. V. Royer, C. A. Mitchell, and K. M. Starks

J. Environ. Qual. 36:408–415 (2007).

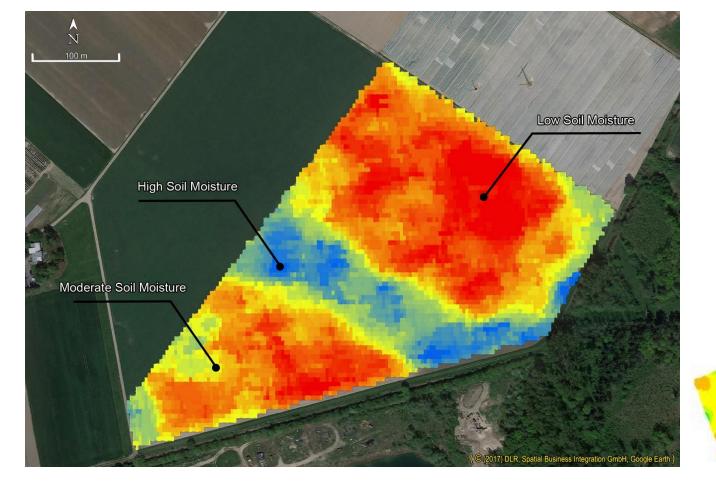
Hydraulic and Chemical Pathways in the soil Matrix



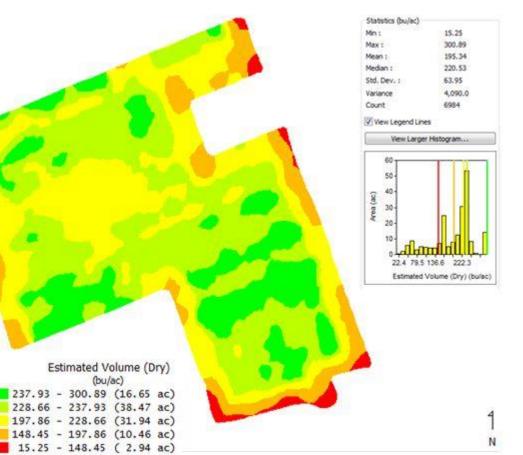
How the transport pathway influences the bioavailable P?

Is there some methods to differentiate surface from subsurface contribution at the watershed outlet?

Mark D. Sunohara^a, Natalie Gottschall^a, Emilia Craiovan^a, Graham Wilkes^a, Edward Topp^b, Steven K. Frey^{a,c}, David R. Lapen^{a,*} Agricultural Water Management 178 (2016) 159–170

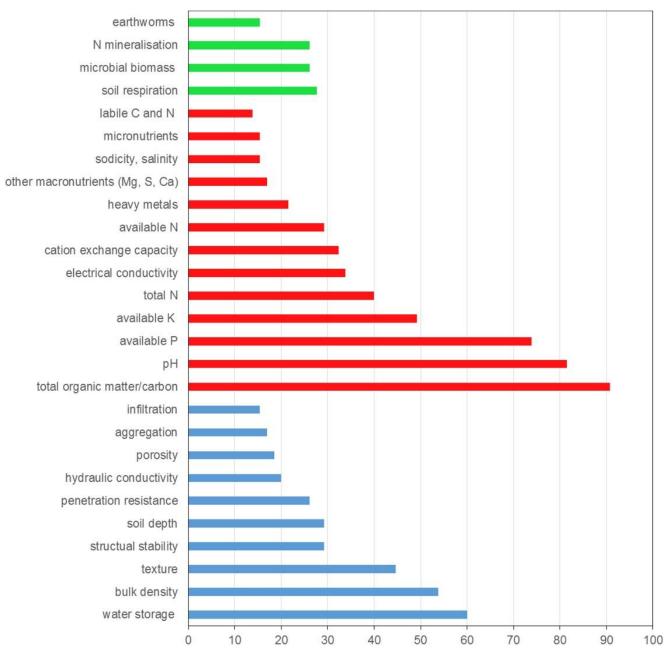

■ Stream

Overland Flow


^a Frey et al., 2014
^b Sunohara et al., 2015
^c Sunohara et al., 2014; current article
^d Ball Coelho et al., 2012

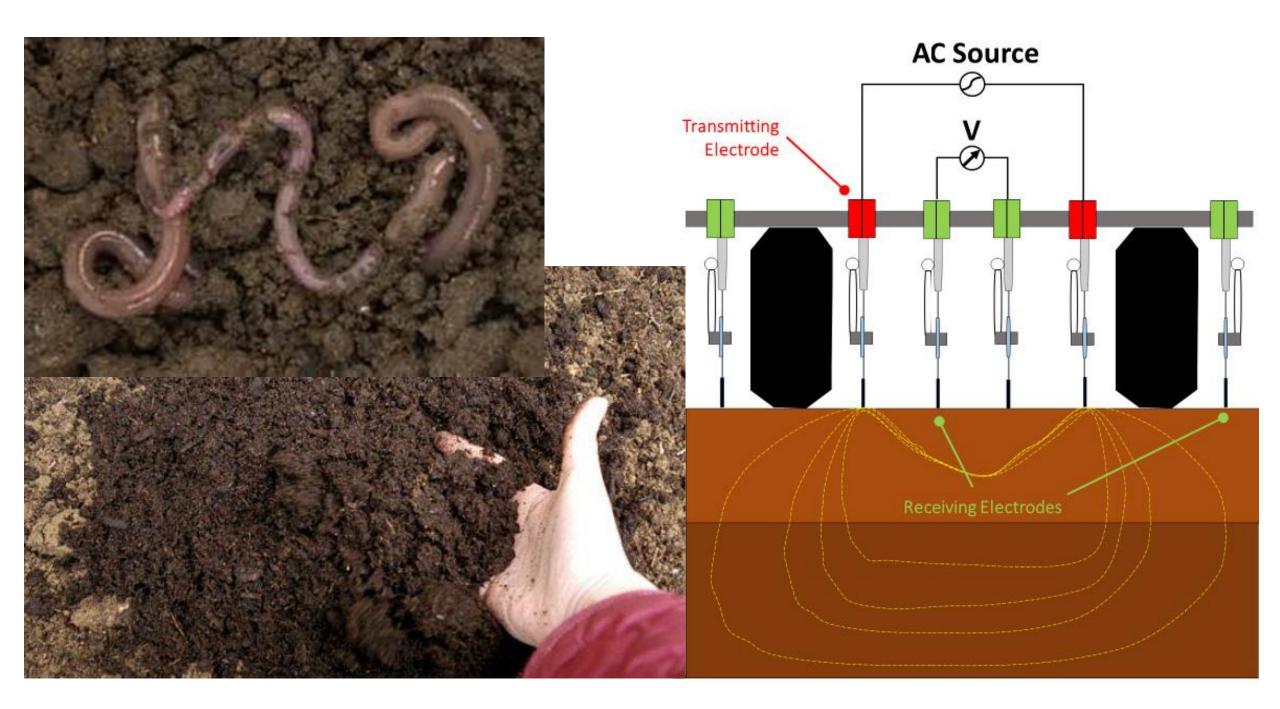
What are the Challenges?

- 1.How to take soil variability into account, both chemical properties?
- 2.Can field results be extrapolated to the watershed scale?
- 3.How to incorporate drainage into soil health indicators?



Moisture, soils and crop yield variability

Site specific drainage management?


360ft

Soil Health Indicators

frequency of soil quality indicator (%)

