

Long-term trends in annual nutrient concentrations from the <u>Maumee River</u>

Long-term trends in annual nutrient concentrations from the <u>Maumee River</u>

Long-term trends in annual nutrient concentrations from the <u>Maumee River</u>

Hydrology controls DRP concentrations, whereas source drives nitrate concentrations

Hydrology controls DRP concentrations, whereas source drives nitrate concentrations

An increase in memory (α) suggests stronger hydrologic control on DRP concentrations

Increases in precipitation and tile drain intensity may be enhancing hydrologic controls on P

- Precipitation intensity increased in the late 1990s (# of events >2") (Aaron Wilson, OSU Climate Office)
- Tile drain extent increased 23% from 1974-2012 (NASS, 2012)
 - Anecdotal evidence for increased intensity in the mid 2000s

ncwqr.org, Choquette et al. 2018, State of the Great Lakes Indicator Report 2017

We know nitrate losses are high in tile drains, but what about DRP?

Surface runoff has higher concentrations

Subsurface drainage has higher loading

81% discharge 71% of DRP load

Pease et al. 2018, JGLR

85% of P application is commercial, soil test P in maintenance range LakeErieAlgae.com

Fertilizer injection is as effective as intensive tillage at reducing phosphorus

Study examined phosphorus in pan lysimeters after a rainfall simulation

Other BMPs

Controlled drainage

- Ohio study found decreased tile discharge by 8 – 34%, nitrate loads by -8 – 44%, and dissolved P loads by 40 – 68% (Williams et al. 2015)
- However, concentrations were not significantly decreased
- What would be the effectiveness from March July?

Cover crops and dissolved P

- Some studies found increased dissolved P loads with cover crops (especially with freeze-thaw) (Liu et al. 2014, Bechmann et al. 2005, Elliott 2013)
- Other studies found little influence of cover crops on dissolved P loads (Zhang et al. 2017, Kevin King pers.comm., Dave Baker pers.comm.)
- One study found decreased DRP in spring (Hanrahan et al. 2018)

Special thanks to all our support!

NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM

References

- Baker, D.B., Confesor, R., Ewing, D.E., Johnson, L.T., Kramer, J.W., Merryfield, B.J., 2014a. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. J. Great Lakes Res. 40, 502–517.
- Baker, D.B., Johnson, L.T., Confesor, R.B., Crumrine, J.P., 2017. Vertical stratification of soil phosphorus as a concern for dissolved phosphorus runoff in the Lake Erie Basin. J. Environ. Qual. 46, 1287–1295.
- Bechmann, M.E., P.J.A. Kleinman, A.N. Sharpley, and L.S. Saporito. 2005. Freeze-Thaw Effects on Phosphorus Loss in Runoff from Manured and Catch-Cropped Soils. J. Environ. Qual. 34:2301-2309
- Bullerjahn, G.S., McKay, R.M., Davis, T.W., Baker, D.B., Boyer, G.L., D'Anglada, L.V., Doucette, G.J., Ho, J.C., Irwin, E.G., Kling, C.L., Kudela, R.M., Kurmayer, R., Michalak, A.M., Ortiz, J.D., Otten, T.G., Paerl, H.W., Qin, B., Sohngen, B.L., Stumpf, R.P., Visser, P.M., Wilhelm, S.W., 2016. Global solutions to regional problems: collecting global expertiseto address the problem of harmful cyanobacterial blooms. A Lake Erie casestudy. Harmful Algae 54, 223–238. Stumpf 2016
- Choquette, A.F., R.M. Hirsch, J.C. Murphy, L.T. Johnson, and R.B. Confesor, Jr. 2019. Tracking changes in nutrient delivery to western Lake Erie: Approaches to compensate for variability and trends in streamflow. Journal of Great Lakes Research 45: 21–39.
- Elliott, J. 2013. Evaluating the potential contribution of vegetation as a nutrient source in snowmelt runoff. Can. J. Soil Sci. 93: 435-443.
- Hanrahan, B.R., Tank, J.L., Christopher, S.F., Mahl, U.H., Trentman, M.T., Royer, T.V., 2018. Winter cover crops reduce nitrate loss in an agricultural watershed in the central U. S. Agric. Ecosyst. Environ. 265, 513–523.
- Kinsman-Costello, L.E., J. O'Brien, and S.K. Hamilton. 2014. Re-flooding a historically drained wetland leads to rapid sediment phosphorus release. Ecosystems 17:641-656
- Liu, K., Elliott, J.A., Lobb, D.A., Flaten, D.N., Yarotski, J., 2014. Nutrient and sediment losses in snowmelt runoff from perennial forage and annual cropland in the Canadian prairies. J. Environ. Qual. 43, 1644–1655.
- NASS (National Agricultural Statistics Service), 2016. U.S. Department of Agriculture, Statistics for Ohio Available at http://www.nass.usda.gov/Statistics_by_State/Ohio/index.asp
- Ohio Environmental Protection Agency, 2018. Nutrient mass balance study for Ohio's major rivers. http://epa.ohio.gov/Portals/35/documents/Nutrient%20Mass%20Balance 20Study%202018_Final.pdf.
- Pease, L.A., Fausey, N.R., Martin, J.F., Brown, L.C., 2017. Projected climate change effects on subsurface drainage and the performance of controlled drainage in the Western Lake Erie Basin. J. Soil Water Conserv. 72 (3), 240–250. Ncwqr.org
- Scavia, D., Allan, J.D., Arend, K.K., Bartell, S., Beletsky, D., Bosch, N.S., Brandt, S.B., Briland, R.D., Daloğlu, I., DePinto, J.V., Dolan, D.M., Evans, M.A., Farmer, T.M., Goto, D., Han, H., Höök, T.O., Knight, R., Ludsin, S.A., Mason, D., Michalak, A.M., Richards, R.P., Roberts, J.J., Rucinski, D.K., Rutherford, E., Schwab, D.J., Sesterhenn, T., Zhang, H., Zhou, Y., 2014. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. J. Great Lakes Res. 40, 226–246. Williams 2016
- Stumpf, R.P., Johnson, L.T., Wynne, T.T., Baker, D.B., 2016. Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. J. Great Lakes Res. 42, 1174–1183. State of the Great Lakes Indicator Report 2017
- Williams, M.R., K.W. King, E.W. Duncan, L.A. Pease, and C.J. Penn. 2018. Fertilizer placement and tillage effects on phosphorus concentration in leachate from fine-textured soils. Soil & Tillage Research 178:130-138.
- Williams, M.R., K.W. King, and N.R. Fausey. 2015. Drainage water management effects on tile discharge. Agricultural water management 148: 43-51.
- Williams, M.R., K.W. King, D.B. Baker, L.T. Johnson, D.R. Smith, and N.R. Fausey. 2016. Hydrologic and biogeochemical controls on phosphorus export from Western Lake Erie tributaries. J. Great Lakes Res. 42, 1403-1411.
- Zhang, T.Q., C.S. Tan, Z.M Zheng, T.Welacky, and Y.T. Wang. 2017. Drainage water management combined with cover crop enhances reduction of soil phosphorus loss. Science of the Total Environment 586, 362-371.
- http://lakeeriealgae.com/
- https://ncwqr.org/