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Chesapeake Bay is not alone!
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Question: Spending billions but everyone is unhappy

CAN WE MAKE ECOSYSTEM
RESTORATION MORE EFFECTIVE?




Emergent Patterns

Tightening resources (“bang for the buck”) and tradeoffs

Convolution of hypoxia, warming, acidification, coastal
development, agriculture, and habitat

Increasing knowledge and savvy of stakeholders

Critical (controversial) role of increasingly complex and
complicated coupled models

Increasing demands for linkage to living resources (“fish”)
— Title: State of the Science = Gap Analysis 2 Assessment?



Chesapeake Bay

Good News

Bad News

You are not alone

We know how to do this

Chesapeake is well studied

Long history of monitoring,
modeling, and process
studies

Some have gone sour

Answers may not satisfying;
false negatives

Major effort

Other management
occurring to promote
stability




Technical Issues (cautions)

Which models to use (looks arbitrary or convenient)

A lot of work on coupling models (loss of information)

Validation (physics people need to relax)

Uncertainty (I prefer certainty)

Multiple and ensemble modeling (confusion)

Domain of application (not defined)

{Active/passive} Adaptive Management (delay difficult decisions)

Coupled human-natural systems (disappointing in fisheries)
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Some Examples (Doable)

1. Bay anchovy in Chesapeake Bay
Shows it can be done

2. Croaker in Gulf of Mexico (ongoing)
Specific to reducing nutrients and effects of water quality

3. Atlantis model
More complex

4. Bay anchovy larvae
Much simpler — small part of life cycle

5. Habitat analyses
Very simple

All involve linking water quality to fish and using coupled modeling
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1. Bay Anchovy in Chesapeake Bay
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Adamack, A.A., K.A. Rose, and C. Cerco.
2017. Simulating the effects of hypoxia on
bay anchovy in the Chesapeake Bay using
coupled hydrodynamic, water quality, and
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Modeling Coastal Hypoxia, Springer, New
York, NY
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2. Croaker in GOM

TX
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* |dealized 300 x 800 cell grid (1 km resolution)

* Bottom elevation for each cell is truncated beyond 100 m

Rose, K.A., Creekmore, S., Justi¢, D., Thomas, P., Craig, J.K., Neilan, R.M., Wang, L., Rahman, M.S. and Kidwell, D.,
2018. Modeling the population effects of hypoxia on Atlantic croaker (Micropogonias undulatus) in the
northwestern Gulf of Mexico: part 2—realistic hypoxia and eutrophication. Estuaries and Coasts 41: 255-279.



Model Overview

» Spatially explicit, IBM

Follows 7 stages to age 8
September 1 birthday
Model year begins Sept.
Each year 365 days long

* Hourly processes

Growth
Mortality
Reproduction
Movement

1

e
I Ocean Larva

A
I

1_Yolk Sac Larva




Age 2+ (millions)

25% Reduction in Nutrients
PD: benefit?; Normoxia: best can be expected

Normoxia

0 20 40 60 80 100 120 140
Model Year
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Population Abundance

(10°, years 100-140)

Is the GOM ahead of CB?
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3. Atlantis — Food Web

Design and Parameterization of the Chesapeake
Bay Atlantis Model: A Spatially Explicit End-to-End
Ecosystem Model

Thomas F. Ihde!, Isaac C. Kaplan®. Elizabeth A. Fulton®, Iris A. Gray", Mejs Hasan®, David
Bmce", Ward Slacunr . and Howard M. Townsend’

'NOAA Chesapeake Bay Office, 410 Severn Avenue, Suite 207A, Annapolis, MD 21403;
Tom Ihde@noaa gov

‘Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries

_ Service, NOAA_ 2725 Montlake Blvd E. Seattle, WA 98112

*Commonwealth Scientific and Industrial Research Organization. Marine and Atmospheric
Eesearch, GPO Box 1538, Hobart, Tasmania 7001, Australia

“NOAA Chesapeake Bay Office/Cooperative Oxford Laboratory, 904 South Morris Street,

~ Omford. MD 21654

*Oryster Recovery Partnership, 1805A Virginia Street, Annapolis. MD 21401

NOAA Technical Memorandum NMES-F/SPO-166
September 2016




The Atlantis Model

Provided by Tom Ihde

Physical environment
v'Geology

v’ Chemistry

v'Circulation & currents

v Temperature

- v'Salinity

e of ~ v'Water clarity

w v Climate variability

Biological environment _J
v'Primary production SO
v'Trophic interactions
v'Recruitment relationships-
v'Age structure \
v'Size structure
v'Life History
v'Refuge Habitat

Fisheries
v'Multiple sectors
v'Gears

v'Seasons
v'Spatially explicit

& Nutrient Inputs

| &= v'Currency is Nitrogen

v’ Oxygen

v'Silica

v' 3 forms of detritus
v'Bacteria-mediated recycling



CAM Design: 3-Dimensional Box Model:

Provided by Tom Ihde
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10m
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Ecological Groups: Federal fisheries, Forage, Habitat

Finfish Invertebrates

- Alosines (Amer.Shad, Hickory Shad, Alewife & Herring) - Benthic feeders: (B-IBI “CO™+'IN") ...,

- Atlantic Croaker - Benthic predators: (B-1BI “P’) ...,

- Bay anchovy - Benthic suspension feeders: (B-IBI “SU”)

- Black drum - Blue crab YOY

- Bluefish - Blue crab adult ;

- Butterfish, harvestfish (“Jellivores”) - Brief squid Provided by Tom lhde
- Catfish - Macoma clams: (B-IBI)

- Gizzard shad - Meiofauna: copepods, nematodes, ...,

- Littoral forage fish: silversides, mummichog - Oysters

- Menhaden _

- Striped bass Primary Producers

- Summer flounder - Benthic microalgae (“microphytobenthos” benthic diatoms, benthic cyanobacteria,
- Other flatfish (hogchoker, tonguefish, window pane, winter flounder) & flagellates)

- Panfish: - “Grasses:”

Euryhaline: Spot, silver perch; FW to 10ppt: yellow perch, bluegill SAV —type varies with salinity

- Reef assoc. fish: spadefish, tautog, black seabass, toadfish - Marsh grass _ N
- Spotted hake, lizard fish, northern searobin - Phytoplankton — Large: diatoms & silicoflagellates (2-200um)

- Weakfish - Phytoplankton — Small: nannoplankton, ultraplankton,

- White perch aka “picoplankton” or “picoalgae” (0.2-2um),
cyanobacteria included (2um)

Elasmobranchs - Dinoflagellates (mixotrophs) (5-2,000um)

- Cownose ray

- Dogfish, smooth ZooPlankton

- Dogfish, spiny - Ctenophores

- Sandbar shark - Sga nettles ' - )
- Microzooplankton (.02-.2mm): rotifers, ciliates, copepod nauplii

Birds - Mesozooplankton (.2-20mm): copepods, etc.

- Piscivorous birds (osprey, great blue heron, brown pelican, cormorantPetr'_tus
- Benthic predators (diving ducks) - Carrion

- Herbivorous seabirds (mallard, redhead, Canada goose, & swans) ~ Eatr)'rlion (sediment)

- Labile
Mammals - Labile (sediment)
- - Refractory

- Refractory (sediment)
Reptiles . _ _
_ Bacteria (.2-2 um [.002 mm] - feed microzooplankton food chain)
- Benthic Bacteria (sediment)
- Pelagic Bacteria: (free-living)



Provided by Tom Ihde
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Sensitivity To Environmental Factors
Selected Group Effects of Interest to Management
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4. Larvae
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Adamack, A.T., K.A. Rose, D.L. Breitburg, A.J. Nice, and W.S. Lung. 2012. Simulating the effect of
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5. Habitat

2017 Coastal Master Plan: Modeling
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Habitat

Data-based so some people hate it less than others
Long history — started with hydro-licensing

Sum over spatial cells to get WUA

New maps under management scenarios

Not abundance but capacity

Interpretation is tricky



“Familiar Situation in Louisiana”

 Two food web models and habitat suitability

* Did not know how to use them - stalemate

e Asked us (Rose, Ainsworth,
and Brady) to help them

TTTTTTTTTTTTTTTTT
FFFFFFFFF

Potential Use of Existing
Ecological Models for the
Mid-Barataria Diversion EIS

April 2019
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Non-technical Issues

Terms: fish, fisheries, habitat
hindcast, forecast, prediction, projection, relative vs absolute
sustainable, resilience
uncertainty, sensitivity, validation

Answers to simple questions

7 NATIONAL
Managing expectations ESYN SOCIO-ENVIRONMENTAL
SYNTHESIS CENTER

Role of stakeholders Oct 22 Dr. Kenneth Rose
Multidisciplinary team science and engaged {-raged}

stakeholders: Two often neglected aspects of coupled
Unified voice human-natural systems

Communication of models, uncertainty, risk

Ultimately, trust



Terms

Fishing or fisheries is “the industry or occupation devoted to the
catching, processing, or selling of fish, shellfish, or other aquatic
animals”

Habitat — always say what aspects and processes you mean

Prediction, projection, forecasting
— Look at the x-axis and y-axis

Sustainable, etc.
— Always give units and scales

Uncertainty
— We love the methods
— lIssue is proper interpretation of the “error bars”



Marginal likelihood
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Environ Monit Assess (2018) 190: 530
https://doi.org/10.1007/s10661-018-6912-z

Applying spatiotemporal models to monitoring data
to quantify fish population responses to the Deepwater
Horizon oil spill in the Gulf of Mexico

Eric J. Ward(® - Kiva L. Oken - Kenneth A. Rose -
Shaye Sable - Katherine Watkins -
Elizabeth E. Holmes » Mark D. Scheuerell




Managing Expectations

Lags in water quality, LAGS in living resources
Costs a lot of money, 4-year political cycle

Detection challenge within the variation caused
by other factors

Interpreting modeling products

False negatives



Upper
Klamath

[ Detail 3 \ e Lal:. :a“r:ath
el i > c;::::m"l 3 K | amat h controvers y Klamath Dam Removal Overview
CA" - land2 ] Report for the Secretary of the Interior
_ S o e a0 e e e continues =
Klamath River Expert Panel

|

.’c{escent City. Yrekam
\. Klamath Klamath
River

Pacific | Weed
Ocean |

B An agreement to remove
four dams has been
reached, but barriers

& remain

FINAL REPORT

nnnnnn
Weitchpec = CALIFORNIA

2
@ 3
Hoopa s s Trinity
X Lake

Todd Trumbull / The Chronicle

Klamath Propaganda: Who do you believe?

I ndependent Peer ReV|eW Says Kl a math Da m Prepared for the U.S. Department of the Interior
Removal Science “Sound” and “Reliable” E?':;tngg;vgtEaS::nngr%gv%T Overview Report

for the Secretary of the Interior (2012)

March 2012

Klamath River: A Big Dam Controversy
Finally Resolved

Whistleblower is taking his case to the public Prepared by
ATKINS

Paul Houser, the Bureau of Reclamation’s former
scientific integrity adviser, says he was fired for
voicing concerns that the decision to remove four
Klamath River dams is being based on
politics and money not science. He
spoke at a Tea Party meeting Sunday
in Klamath Falls.



http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=QDOFo6pYZUILiM&tbnid=lbJiNC4aML3oIM:&ved=0CAUQjRw&url=http://www.indybay.org/newsitems/2008/05/05/18497194.php&ei=lZ2nUd2XNYX89QSiwYHwDw&bvm=bv.47244034,d.eWU&psig=AFQjCNGWtdKRE-L5uRYngU6wef3Rg6-D8Q&ust=1370025731135220
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=UTRsqmRlMappUM&tbnid=IvF5a1H_l7ec0M:&ved=0CAUQjRw&url=http://www.sfgate.com/science/article/Remove-4-dams-on-Klamath-study-urges-4411365.php&ei=xJ2nUcmqM4PG9gSjr4H4Dw&bvm=bv.47244034,d.eWU&psig=AFQjCNHq61bSB-Se7JYcleW09k32DyZZQw&ust=1370025782998509

Preparation documents sent to review panel members for
the Gulf of Mexico Red Snapper stock assessment




Technical & Non-technical Issues +
Lessons Learned

@ Coastal Protection and Restoration Authority

Ecological Modelling 300 (2015) 12-29

Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

Proposed best modeling practices for assessing the effects of @Cmsm
ecosystem restoration on fish

Kenneth A. Rose **, Shaye Sable”, Donald L. DeAngelis, Simeon Yurek?, Joel C. Trexler®,
William Graf', Denise J. Reed®

9
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Scheme for Fish and Restoration

* 31 steps
— Specific situation
— Some not relevant, others done already

* 13 concepts
— “framework”

* Proposed best practices
— Tried to call it “Pretty Good Practices”
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13 Concepts

Life cycles and strategies

Variability, uncertainty, stochasticity
Generality-precision-realism
Nonequilibrium theory

Scaling

Explicit versus implicit representations
Population definition
Density-dependence

Verification, calibration, validation

. Sensitivity and uncertainty analysis
. Multiple models

. Food web dynamics

. Hidden assumptions



(1) Know the restaration plan
A §

(2) Verify how fish modeling results will be used by RRA

h 2

(3) Define the questions to be answered by the modeling

Y

(4) Construct the conceptual models

Y

X

(5) Population or community
dynamics of species of interest

(6) How restoration actions affect growth,
mortality, reproduction, and movement
J

h i

(7) Unify into an overall conceptual model

—( (8) Review — R&S )
¥

¥ L 3
(9) Identify existing (10) Develop library of (11) Create data inventory and
management models models and approaches summarize prior knowledge

k 2

(12) Candidate models and approaches I
¥

(13) Fewer viable models and approaches 14) ¢ .
T (14) Constraints
. - (from RRA)
(15) Even fewer viable models and approaches Exit

¥
(16) Specify the model(s) k
L

(17) Prepare a strategy document

(18) Review — R&P&S )

h i

(19) Perform verification and diagnostic testing

Exit

(20) Perform calibration

k. J

(21) Perform validation

k2

(22) Perform sensitivity and uncertainty analysis

k. 4

(23) Report on results for baseline only

(24) Review — R&P )

(25) Scenarios — FWOA and FWA

L 2

(26) Perform uncertainty analysis

(27) Results to RRA |(—( (28) Review R )
3

(29) Public Reporting (30) Review =S )

L ]

P (31) Post-auditing




13 Concepts — (1) Life Cycles

Life History Classification of Animals
Winemiller and Rose (1992)
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o M s 1 I |
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Fig. 12.21 in Molles 2006 O) EQUILIBRIUM

Delta Smelt Resiliency Strategy. California Natural Resources Agency, July 2016.



13 Concepts — (4) Nonequilibrium Theory
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13 Concepts — (5) Scaling
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13 Concepts — (6) Explicit vs Implicit

* Process rates depend on a variable

* Formulations
— Relationship within the model
— Implied in the model so can still answer questions
— Limited domain for further variation

— Bridge calculations & ronters

nnnnnnnnnnnnnnn

aaaaaaa

. Modeling Quantitative Value of
¢ DO n Ot bEI |eve Ia be I S Habitats for Marine and Estuarine
Populations

el Fodrie®, Jaap van der Meer?,
n E. van de Wolfshaar®




Going Forward — Checklist

We know the question(s) pretty well
Extensive data and database

Process-level knowledge
— Physics to water quality
— Water quality to fish

Complex life cycles with multiple factors
Existing models

Conclusion: Necessary, Messy, and Doable



