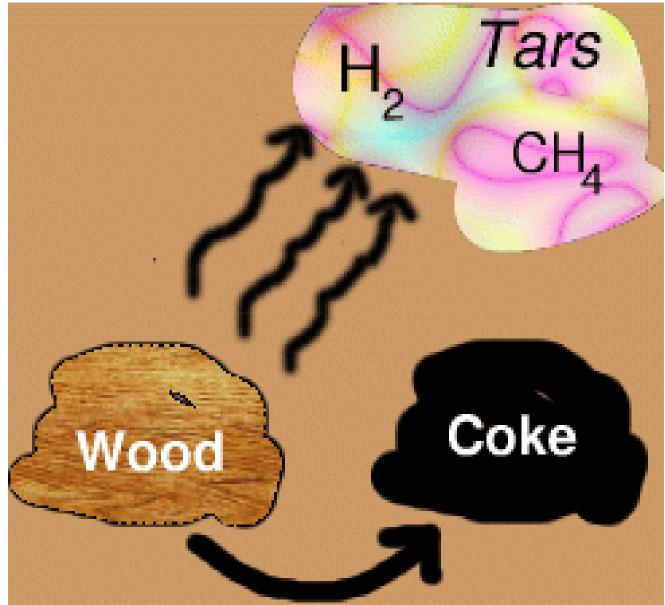


Pyrolysis Technology: Environmentally friendly solution to nutrient management in the Chesapeake Bay

Foster A Agblevor, D. Grysko, K. Revelle Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061 fagblevo@vt.edu

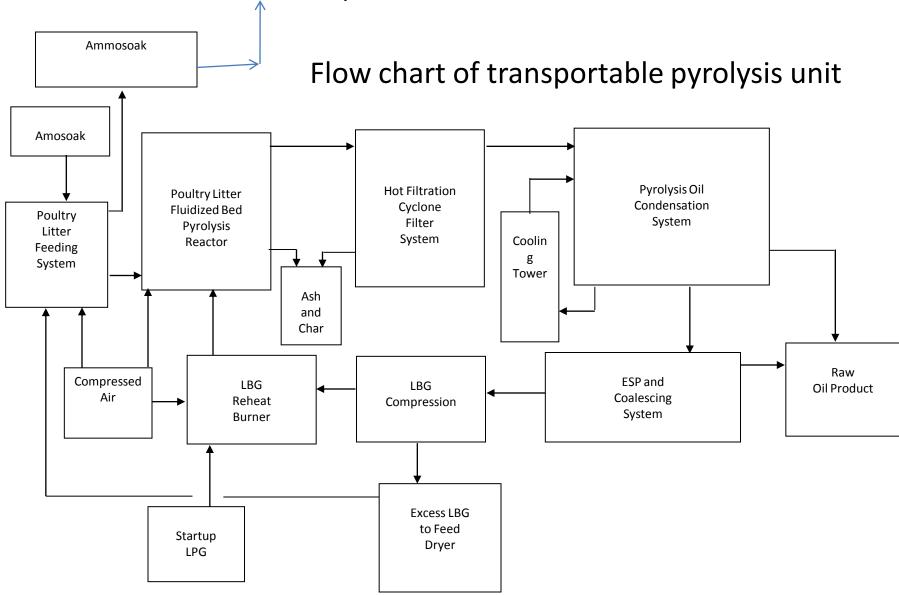

Reasons for Pyrolysis of Poultry Litter

- Traditionally, poultry litter is disposed by land application and used as cattle feed
- Disposal of poultry litter in the U.S. poultry industry is becoming a major challenge because of :
 - Excess nutrient in the soil due to land application
 - Contamination of drinking water
 - Eutrophication of surface waters
 - Ammonia emission from poultry houses
 - Soil acidification through nitrification and leaching
 - Biosecurity concerns

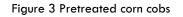
Feedstock analysis (dry basis)

Sample	C (%)	H (%)	N (%)	S (%)	CI (%)	Ash (%)	HHV (MJ/kg)
Chicken bedding	47.24	5.94	<0.5	<0.2	82 ppm	1.36	19.25
Broiler litter-1	34.05	4.42	2.89	0.63	0.74	15.33	15.47
Broiler litter-2	36.84	5.00	3.94	1.02	1.14	16.05	15.65
Broiler litter-3	35.33	5.40	4.10	0.70	n/a	21.17	14.37
Starter turkey litter	43.65	5.71	2.57	0.36	0.20	5.42	18.47

Schematic depiction of Biomass pyrolysis


Fast pyrolysis

- Vapor residence time 1<t<5 seconds
- Pyrolysis temperature 400≤T≤600 °C
- Products—liquid, solid, gases
- Liquid yield 60 to 70 wt%
- Gas yield 10 to 20 wt%
- Solid yield 10 to 40 wt%


Demonstration Unit

- Funding from the National Fish and Wildlife Foundation and Farm Pilot Projects Coordination was used to build a transportable pyrolysis unit to convert poultry litter into biooil and biochar (slowrelease fertilizer) in the Shenandoah Valley.
- Pyrolysis demonstration is in progress.
- The demonstration unit is on the farm of Mr Oren Heatwole, Poultry Specialties Inc, Dayton, VA.

Exhaust to atmosphere

Amosoak Sample

Transportable pyrolysis unit

Poultry litter biooil

Products yield from fluidized bed reactor

	Temperature,	Yield, wt%				
Sample	°C	Oil	Gas	Char		
Chicken bedding	500	63.3±11.3	n/a	12.7±		
Broiler litter-1	500	45.7±2.9	13.6±5.7	40.6±6.2		
Broiler litter-2	500	36.8±1.2	22.3±2.5	40.8±1.9		
Broiler litter-3	500	43.5±5.1	23.6±6.4	32.9±3.7		
Starter Turkey litter	500	50.2±1.6	21.7±1.9	21.7±1.9		

Bio-oil properties

Sample	C (%)	H (%)	O (%)	N (%)	S (%)	Moit (%)	рН	Ash (%)	HHV (MJ/kg
Chicken bedding	55.25	6.54	37.58	<0.5	<0.05	5.3	2.7	<0.08	22.64
Broiler litter-1	63.24	7.22	23.89	5.05	0.46	4.6	6.1	<0.09	28.25
Broiler litter-2	64.06	8.14	22.27	4.94	0.41	4.6	6.3	<0.09	28.0
Broiler litter-3	62.84	8.31	20.72	7.23	<0.9	4.0	6.3	0.17	29.57
Starter turkey litter	64.90	8.44	20.31	5.60	0.4	3.7	4.2	0.10	29.76

Modified Furnace for Using Bio-Oil

Pyrolysis gas composition

Component	Concentration	Mass rate (lbs/h)
СО	1414 ppmdv	1.10
Filterable Particulates	0.0106 (g/dscf)	0.02
NOx (as NO ₂)	19.2 ppmdv	0.02
NH ₃	942.8 ppmdv	1.86
VOC (as propane)	5300 ppmdv	6.50
Phenol	8.73 ppmdv	2.53E-02
Formaldehyde	0.05 ppmdv	4.34E-05
HCI	3.65 ppmdv	0.004
H ₂ S	0.00 ppmdv	0.00
Naphthalene	1.29 ppmdv	5.06E-03

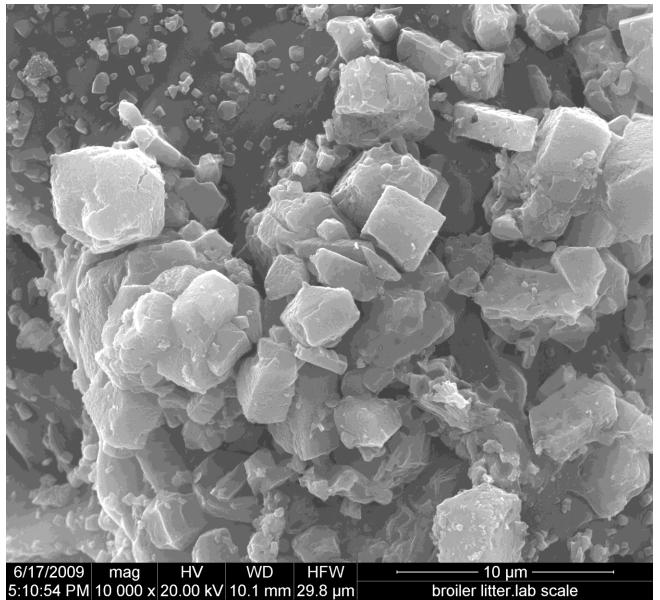
Emission Data

Compound	Emission (lbs/h) Burner off	Emissions (lbs/h) Burner on
H2S	0	0
SO2	0.04	0.06
СО	1.10	1.31
NOx	0.02	0.25
VOC (as propane)	6.50	8.35
Filterable Particulate	0.02	0.06
HCI	0.004	0.005
NH3	1.86	2.06
Phenol	0.0253	0.0146
Naphthalene	0.00506	0.00283
Formaldehyde	0.0000434	0.0000194

Broiler Litter Pyrolysis Char

Particle size distribution of pyrolysis chars

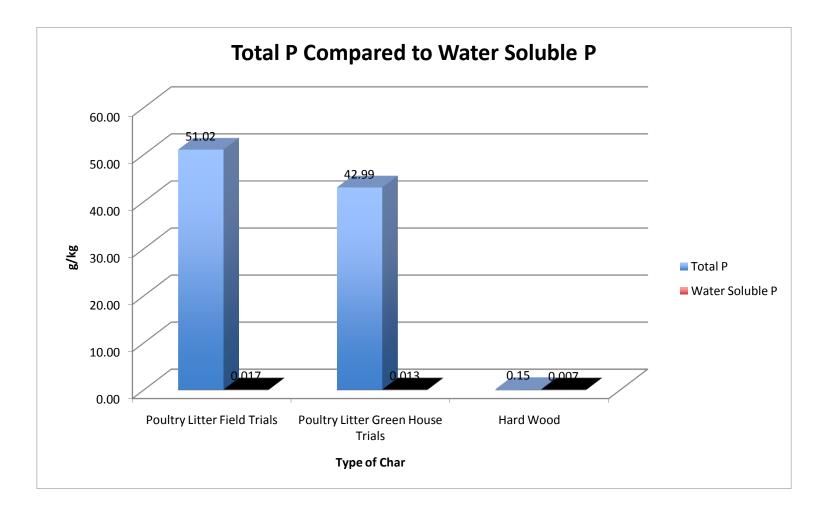
Mesh Size	Size (µm)	Char Mass fraction (%)	
		Poplar wood	Broiler litter
-18/+20	917	0.17	1.44
-20/+35	667	2.63	2.29
-35/+45	428	3.02	0.29
-45/+100	253	61.89	11.32
-100/+115	137	9.29	4.24
-115/+200	100	11.89	3.80
-200/+230	69	3.76	19.43
-230	32	7.28	57.29
Total		100	100


Broiler litter pyrolysis char

6/17/2009 mag HV WD HFW 5:13:10 PM 300 x 20.00 kV 9.9 mm 995 μm

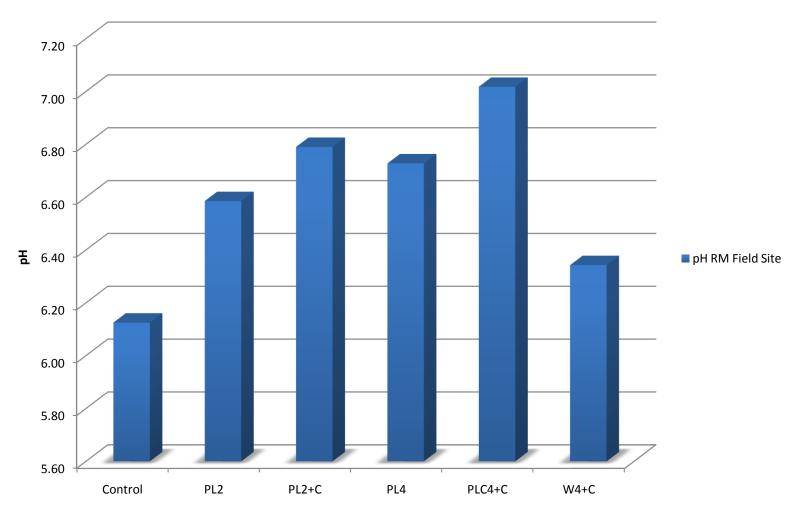
broiler litter.pilot plant

Broiler Litter char sample



Nutrient Composition Broiler-3 char

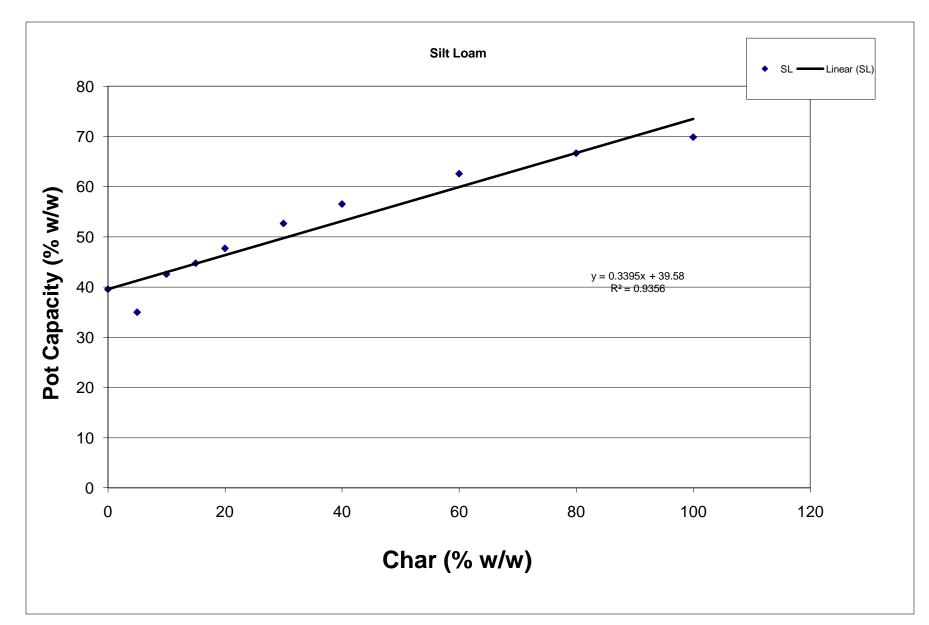
Element/Compound	Wt%
Total N	2.84
P_2O_5	2.68
K ₂ O	4.19
Са	7.5
Mg	1.54
S	0.99
AI	0.54
В	0.01
Cu	0.11
Fe	0.54
Mn	0.12


Element	
Na, (wt%)	2.05
Zn, (wt%)	0.1
Cd, mg/kg	1.0
Ni, mg/kg	40.0
Pb, mg/kg	37.0
As, mg/kg	42.5
Hg, mg/kg	DL
Se, mg/kg	1.9
Mo, mg/kg	16.0
Co, mg/kg	5.0

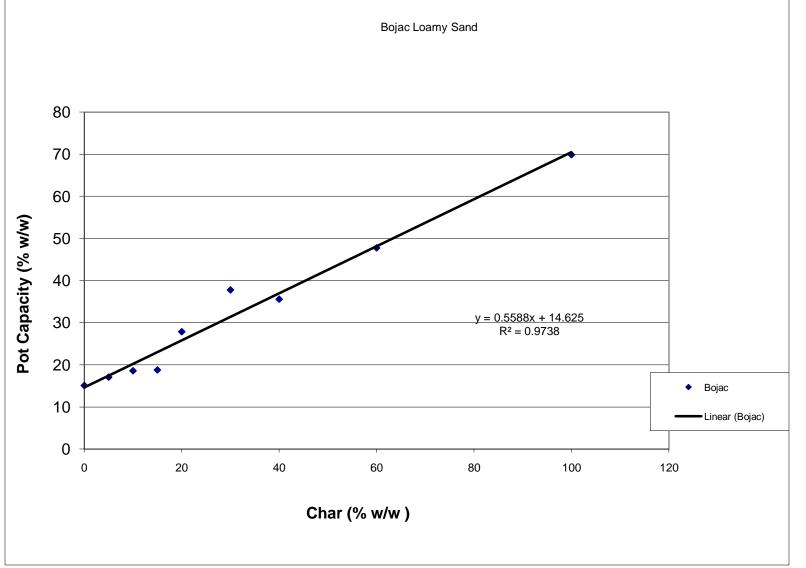
Pyrolysis char sample	рН
Broiler-1	9.6
Broiler-2	9.2
Broiler-3	9.7
Switchgrass	9.7
Poplar wood	7.9
Oak wood	6.6
Pine wood	7.1

Effect of char on soil pH

pH RM Field Site



Effect of char on soil pH


7.00 6.90 6.80 6.70 6.60 6.50 Чd pH AF Field Site 6.40 6.30 6.20 6.10 6.00 5.90 Control PL2 PL2+C PL4 PLC4+C W4+C

pH AF Field Site

Effect of char on moisture holding capacity of loam soil

Effect of char on moisture holding capacity of sandy soil

Commercialization Potential

- BioEnergy Planet Inc. was formed to commercialize technology
- Received funding from NRCS to build precommercialization unit
- Fertilizer companies evaluating the biochar for fertilizer ingredient (1000 tons per year)

Commercialization Potential

- Small scale cluster model— several 10 tons per day pyrolysis units serving about 20 small farms in the Shenandoah Valley.
- Large scale unit for large production areas such as the Del Marva Penninsula

Conclusions

- •Poultry litter can be successfully pyrolyzed into biooils but have low oil yields and high char yields
- •We can produce bio-oils on a demonstration scale
- Biooils have high energy content, high pH, but are very viscous
- •Non-fuel applications of biooil needs to be developed
- Pyrolysis char release much less nutrients compared to raw materials
- Evidence from greenhouse studies indicates that the nutrients from biochar are available to plants
- Nutrients take longer than typical growing seasons to be released

Acknowledgement

- We greatly appreciate the contribution of Virginia Poultry Federation, Chesapeake Bay Foundation and Shenandoah RC & Council for their foresight and initial funding support.
- Farm Pilot Projects Coordination Inc (FPPC) for funding support
- National Fish and Wildlife Federation for Scale-up funding support
- Blue Moon Fund Program for funding support
- Mr Robert Clark for initiating the project, collecting samples and getting the growers in the Valley involved in the project
- Waste Solutions Forum for promoting the project

Litter Powered!!!

Thank you

• Questions?