What is the Importance of Legacy Sediment Relative to Other Sediment Sources?

CBP STAC Workshop – Legacy Sediment, Riparian Corridors, and Total Maximum Daily Loads April 24, 2017

> Sean Smith School of Earth and Climate Sciences University of Maine

Piedmont Geomorphology

Figure 5: Sketch illustrating relationships of landforms, overburden, and stream valleys in the Maryland Piedmont. Abbreviations: U=uplands; S=slopelands, and L=lowlands. In cross section, stipple patterns represents saprolite and modern soil, diagonal lines represent jointing; dashed lines represent foliation. Note truncation of saprolite on hillslopes.

Costa and Cleaves, 1984

	Percentage	Volume (10 ⁻³ hm ³ /km ²)
Flood plains	14	18
Out of system (sediment yield) Colluvial-sheetwash deposits	34 52	45 67
Total	100	130
Note: 150 yr of intensive agricultural drainage area.	land use; 15.2 cm of	soil erosion; 155 km²

TABLE 1. LOCATION OF AGRICULTURAL SEDIMENT

Costa, 1975

Piedmont Plateau

1 order = 62% of 4^{th} order DA, 49% of of total stream length (17 km added)

Sediment Yield Across Scales

 $SDR = \frac{SY}{E}$

$$SYR_n = \frac{SY_5}{SY_1} = \frac{142}{215} = 0.66$$

ONE THIRD of Upland Sediment Supply has been Stored in Alluvial Valleys over the past 50 years.

Floodplain aggradation ~2.6mm/yr

Sediment Transport (mg/s) = Q (L^3 /s) x C (mg/ L^3)

Figure 4.11. Sediment discharge as a function of discharge in Basin 7.

Upland Valley Erosion (Primary Non-Channeled Upland Contributor)

Upland Channel Erosion (1/3 to 2/3 of the Total Upland Load)

Suburban Sediment Yield Can be VERY High

M. GORDON WOLMAN

Upland Disturbances Still Matter

<u>Construction Disturbances Persist</u> *Wolman and Schick, '67 :* 0.24 km² - - 8,406 Mg/km²/yr <u>Mixed Land Uses</u> *York and Herb, '78:* 50% (Urban, 10% Constr.), 1.22 km² - - 1,139 Mg/km²/yr

Gullies > Ag Up > Urban Up > Forest Up > Rivers

Gullies = Urban Up Rivers > Forest Up = Ag Up

Summary Points

- Modern UPLAND sediment yield remains very high relative to estimated regional background levels.
- Erosion of 0 and 1st order upland waterways is pervasive, even in forests. Urban areas are not sediment "starved".
- Upland Culprits (why is this happening):
 - Intense disturbances
 - High surface runoff rates (urban and rural)
 - Efficient delivery
- Modern LOWLAND valleys are storing (regulating) upland sediment delivery $(SY_5 < SY_{0-1})$
- If valley-bottom rates of sedimentation exceed erosion as indicated by recent studies, then the proportion of watershed sediment delivery derived from stream banks is necessarily small.