Engineering Reliability & Effectiveness of Restoration Practices

Drew Altland, PE Water Resources Manager

Collaboration and Data Support:

Dr. Parola & Dr. Croasdaile of University of Louisville

Dr. Merritts, Dr. Walter & Rahnis of Franklin & Marshall College

Common Post-Settlement Forms

Historic and modern anthropogenic impacts

Common Post-Settlement - Form A

Non-incised and perched streambed – primarily wetland riparian zone

Common Post-Settlement - Form B

Incised and perched streambed – primarily non-wetland riparian zone

Common Post-Settlement - Form C

Incised and non-perched streambed – primarily non-wetland riparian zone

UVIAL SEDIMENTS

- Vulnerable to rapid widening
- High in-channel stress
- Susceptible to freeze/thaw erosion
- **Root zone groundwater disconnect**
- **Dry riparian zone invasive plants**
- Mobile bed & epifaunal substrate

Common Post-Settlement - Form D

Incised and relocated channel perched on valley margins - primarily non-wetland riparian zone

Pre-Settlement Conditions

Floodplain vegetation connected to groundwater with expansive wetlands

Integrated Stream & Wetland System

Incised Stream Intervention

Basic Design Strategies

Intervention Approach 1

Eliminate incised channel by modern sediment removal

Approach 1 Goals/Methods:

- Strive to connect floodplain root zone to groundwater, base flow and flood flows
- Promote <u>retention</u> of carbon, sediment and nutrient
- Rely on vegetation and native materials for stability
- Create frequent floodplain connection
- Increase flood storage & base flow residence time
- Move evolutionary trend <u>forward</u>

Intervention Approach 2

Incised channel stabilization to store modern sediment

Approach 2 Goals/Methods:

- Rely on in-channel structures
- Combat high stress environment
- Promotes <u>transport</u> of sediment, nutrients & carbon
- Infrequent floodplain connection
- Hold evolutionary trend

Intervention Approach 3

Elevate streambed to store modern sediment

Approach 3 Goals/Methods:

- Strive to connect floodplain to <u>base flow</u> and flood flow
- Disconnection to groundwater inputs <u>susceptible to drying</u>
- Promote <u>retention</u> of carbon, sediment and nutrient
- Rely heavily on grade control(s)
- Long-term <u>stability challenges</u>, especially in larger watersheds
- Reverse evolutionary trend

Hydrodynamic Design Analysis

Vulnerability Assessment

Restoration of Lost Functions

Integrated Stream and Floodplain Restoration Approach

Questions?

