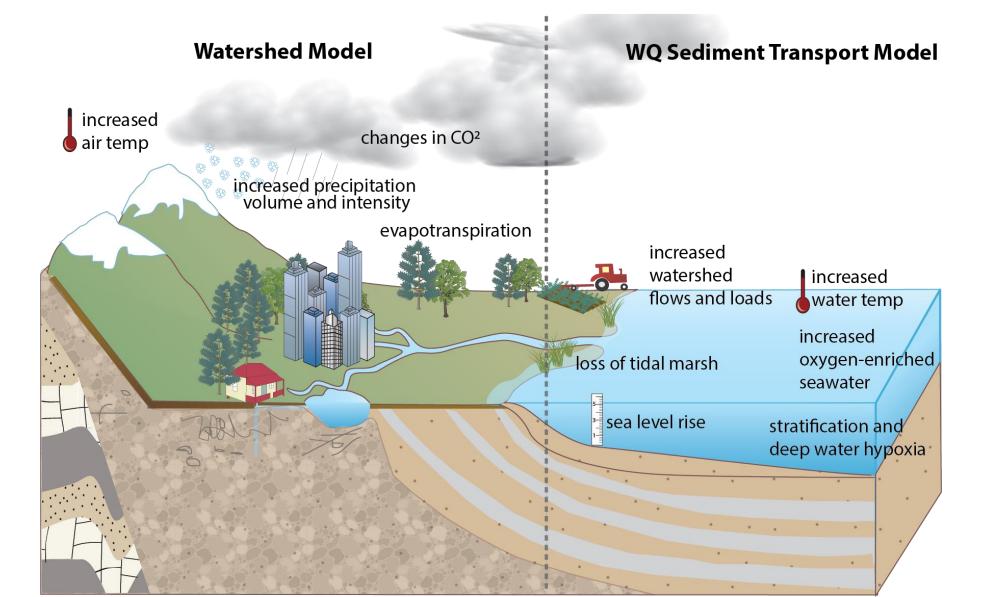


Chesapeake Bay 2017 Midpoint Assessment: Incorporating Climate Change into the Phase 3 WPA



Water Quality Goal Implementation Team Meeting December 4-5, 2017

Accounting for the Changing Conditions

- The Climate Resiliency Workgroup and the Modeling Workgroup have been working with the Partnership's Scientific and Technical Advisory Committee to account for changing conditions occurring in the watershed and the Bay's tidal waters in a scientifically defensible manner
- The Water Quality Goal Implementation Team recommends that the Partnership take into account the <u>cumulative</u> responses of climate change (watershed and estuary) and not view impacts separately or in isolation

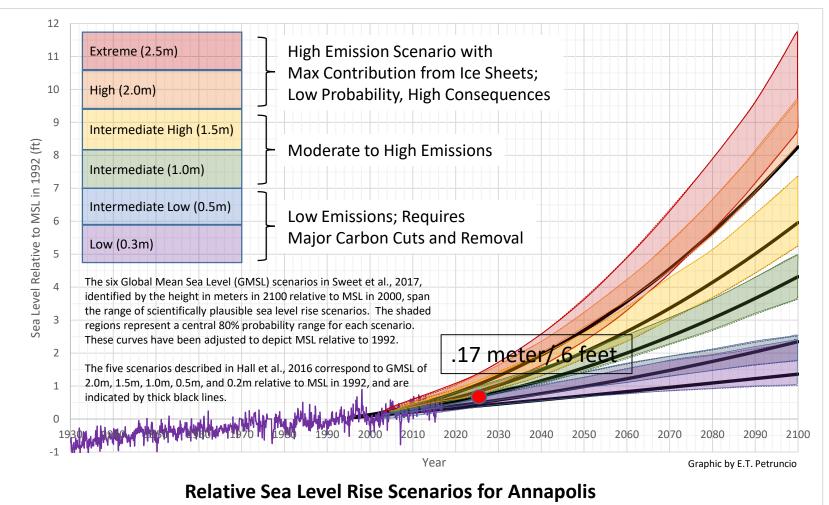
Accounting for Changing Conditions

Impact of Changing Conditions on Bay and Watershed Increase Through Time

- Based on STAC guidance¹, the Partnership is using projections for 2025 that have a high level of confidence
 - Selection of projections for sea level rise and precipitation change were based on past records of observed climatic and resultant river flow conditions.
 - There is less uncertainty in downscaled temperature projections for 2025.
- According to the National Climate Assessment², impacts associated with precipitation, temperature and sea level are all expected to increase beyond 2025

1. CBP Scientific and Technical Advisory Committee. 2016. The Development of Climate Projections for Use in Chesapeake Bay Program Assessments. March 2016 Workshop₂₉₅

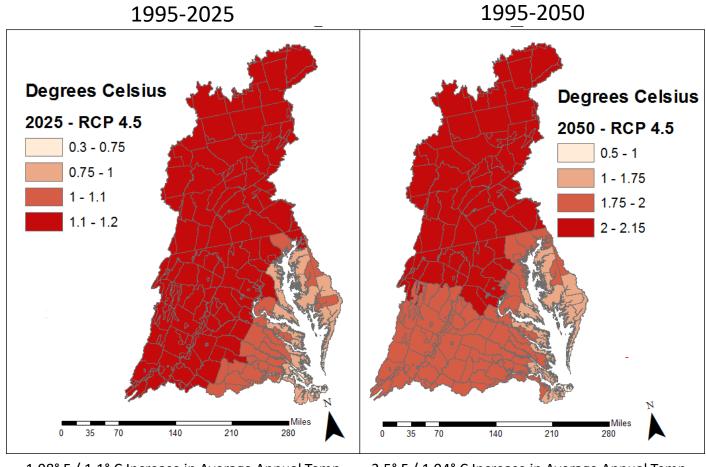
2. 4th National Climate Assessment (November 2017)


Impact of Changing Conditions on Bay and Watershed Increase Through Time

- "The Chesapeake Bay Watershed is already experiencing impacts associated with sea level rise (e.g., coastal storm impacts and nuisance flooding) as well as heavy precipitation events¹"
- "Heavy precipitation events in most parts of the United States have increased in both intensity and frequency since 1901 (high confidence). There are important regional differences in trends, with the largest increases occurring in the northeastern United States (high confidence).²"

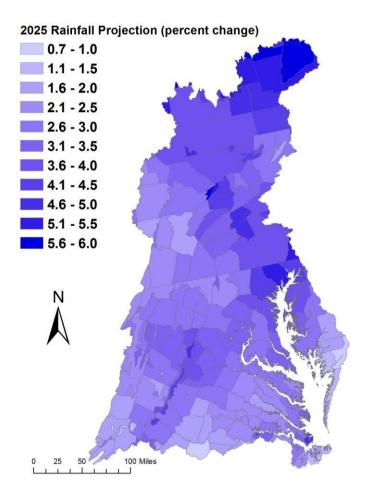
2. 4th National Climate Assessment (November 2017)

^{1.} CBP Scientific and Technical Advisory Committee. 2016. The Development of Climate Projections for Use in Chesapeake Bay Program Assessments. March 2016 Workshop₂₉₆


Relative Sea Level Rise

CBP Climate Resiliency Workgroup recommended 2025 projection: .17 meter/.6 feet

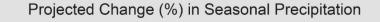
with Annapolis Monthly Mean Sea Level Data for 1930-2016

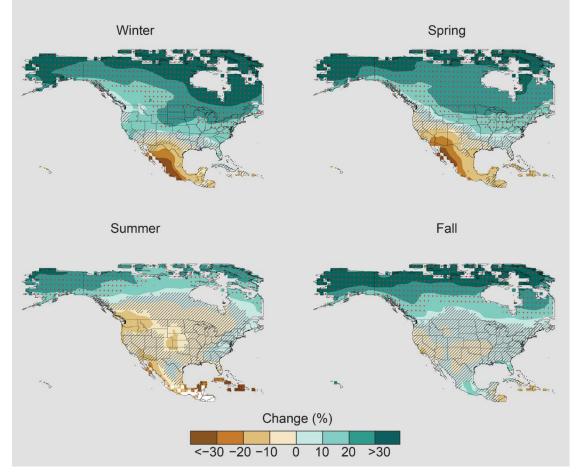

Temperature Change 2025/2050 STAC Recommended Projections

3.5° F / 1.94° C Increase in Average Annual Temp

Precipitation Change

2025 STAC Recommended Projection: Trends in 88-years of annual PRISM^[1] data

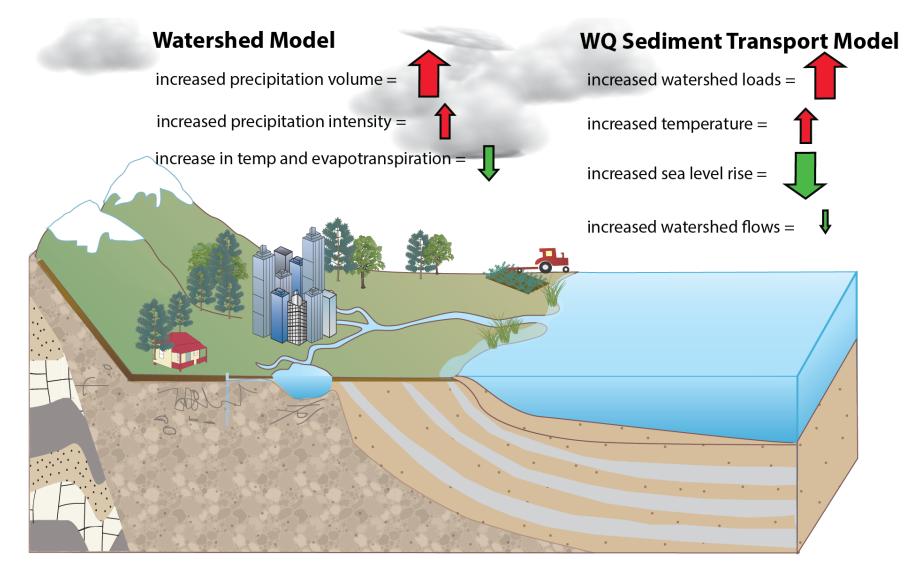



Change in Rainfall Volume 2021-2030 vs. 1991-2000

Major Basins	PRISM Trend
Youghiogheny River	2.1%
Patuxent River Basin	3.3%
Western Shore	4.1%
Rappahannock River Basin	3.2%
York River Basin	2.6%
Eastern Shore	2.5%
James River Basin	2.2%
Potomac River Basin	2.8%
Susquehanna River Basin	3.7%
Chesapeake Bay Watershed	3.1%

11

Precipitation Change 4th NCA Future Seasonal Patterns (2070 – 2099)



Projected change (%) in total seasonal precipitation from CMIP5 simulations for 2070–2099. The values are weighted multimodel means and expressed as the percent change relative to the 1976–2005 average. These are results for the higher scenario (RCP8.5).

Accounting for Changing Conditions

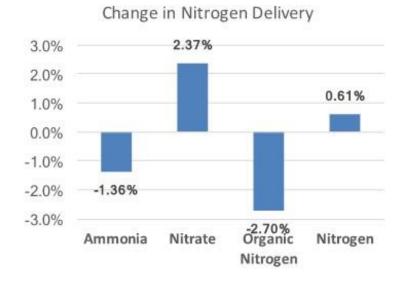
Cumulative Assessment of Bay Low Dissolved Oxygen Impacts

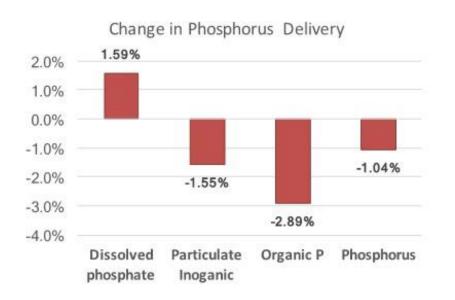
Bay Water Quality Responses to 2025 Climate Change Conditions

Changes in estimated 2025 dissolved oxygen criteria attainment for Deep Channel, Deep Water, and Open Water due to observed temperature and precipitation changes since 1991-2000 (years of average Bay hydrology).

		WIP2	WIP2 + Cono Infill	WIP2 + Cono Infill + CC
Run 223		195TN	208TN	210TN
11/30/17		13.7TP	15.4TP	15.3TP
CAST Loads		1993-1995	1993-1995	1993-1995
		Deep	Deep	Deep
Cbseg	State	Channel	Channel	Channel
СВЗМН	MD		0%	0%
CB4MH	MD	6%	8%	10%
CB5MH	MD	0%	0%	10%
CB5MH	VA	0%	0%	0%
РОТМН	MD	0%	0%	0%
RPPMH	VA	0%	0%	0%
ELIPH	VA	0%	0%	0%
CHSMH	MD	0%	0%	4%
EASMH	MD	6%	7%	8%

Deep Channel nonattainment increases by 2% in CB4MH

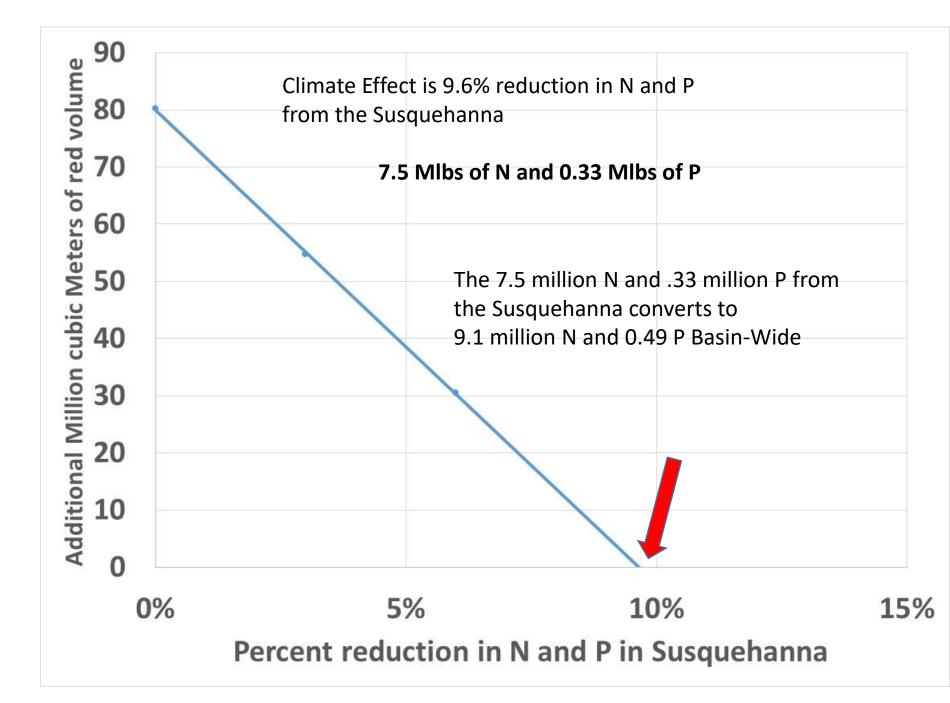

			WIP2 +	WIP2 + Cono	
		WIP2	Cono Infill	Infill + CC	
Run 223		195TN	208TN	210TN	
11/30/17		13.7TP	15.4TP	15.3TP	
CAST Loads		1993-1995	1993-1995	1993-1995	
Cbseg	State	Deep Water	Deep Water	Deep Water	
CB4MH	MD	5%	6%	7% M	
CB5MH	MD	1%	1%	2%	
CB5MH	VA	0%	0%	0%	
CB6PH	VA	0%	0%	0%	
CB7PH	VA	0%	0%	0%	
PATMH	MD	1%	2%	3%	
MAGMH	MD	1%	5%	5%	
SOUMH	MD	3%	8%	7%	
SEVMH	MD	0%	0%	0%	
PAXMH	MD	0%	0%	0%	
POTMH	MD	0%	0%	0%	
RPPMH	VA	0%	0%	0%	
YRKPH	VA	0%	0%	0%	
ELIPH	VA	0%	0%	0%	
CHSMH	MD	0%	0%	0%	
EASMH	MD	0%	0%	0%	


Deep Water nonattainment increases by 1% in CB5MH

Procedures for assessing Open Water attainment under climate change conditions are being developed.

Estimated Changes in Watershed and Bay Loads by 2025 Due to Climate Change

- Inorganic nutrients are increased with climate change
- Organic nutrients are decreased
- Inorganic nutrients have a higher effect on dissolved oxygen

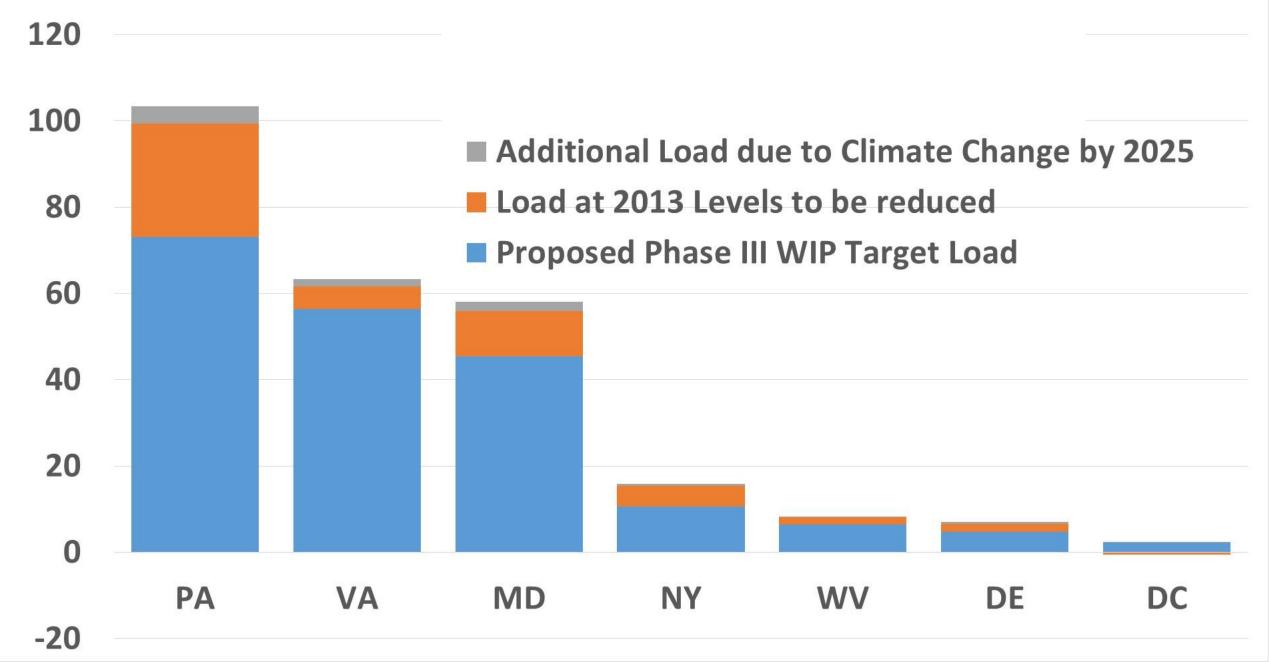


Calculate Climate Effect

		Designated			Red Percent	Red Volume
	Designated	Use Total	Red Percent	Red Volume	WIP + Conow +	WIP + Conow +
CB Seg	Use	Volume	WIP + Conow	WIP + Conow	CC	CC
CB3MH	DW	864	0.05%	0	0.05%	0
CB4MH	DW	2854	5.52%	158	6.50%	186
MD5MH	DW	2097	1.09%	23	1.51%	32
VA5MH	DW	1605	0.00%	0	0.00%	0
POMMH	DW	1839	0.00%	0	0.00%	0
CB3MH	DC	390	0.00%	0	0.00%	0
CB4MH	DC	2126	8.04%	171	10.09%	215
MD5MH	DC	2875	0.00%	0	0.00%	0
VA5MH	DC	1848	0.00%	0	0.00%	0
				352		432
					CC Difference	80

Volume Weighted means a 'red area' increase of 80 million cubic meters

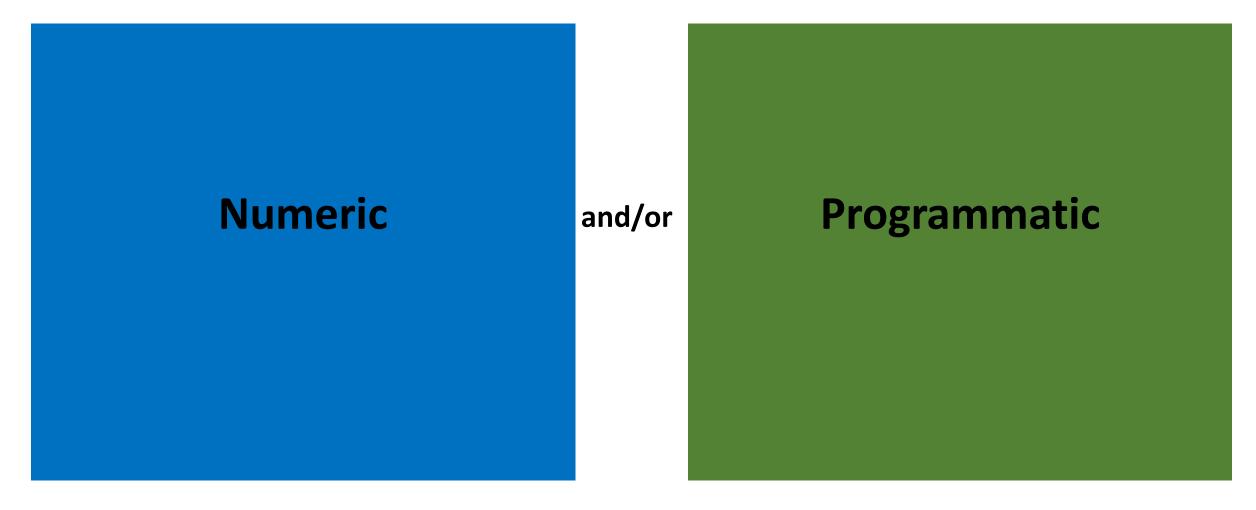
Ran Scenarios with 3% and 6% reduction in Susquehanna N and P



Climate Change Loads: Nitrogen

Jurisdiction	1985 Baseline	2013 Progress		load to	Conowingo Load Responsibility	2013 Progress +	Phase III Planning Target
NY	18.71	15.44	0.400			15.84	10.62
PA	122.41	99.28	4.135			103.41	72.99
MD	83.56	55.89	2.194			58.09	45.39
WV	8.73	8.06	0.236			8.30	6.36
DC	6.48	1.75	0.006			1.76	2.25
DE	6.97	6.59	0.397			6.98	4.66
VA	84.29	61.53	1.722			63.25	56.37
BasinWide	331.15	248.54	9.09			257.63	198.64

*Units: millions of pounds


Proposed Draft Nitrogen Targets

Policy Options for Accounting for Climate Change in the Jurisdictions' Phase III WIPs

Mark Bennett, USGS, CBP Climate Resiliency Workgroup Co-Chair

Two Policy Approaches

Numerical Approach

- A quantitative, numerical approach will result in a very small changed level of effort necessary to meet water quality standards
- Account for the increased pollutant loads to each jurisdiction's portion of the Bay watershed
- Accounts for feedbacks to the Bay's assimilative capacity
- This approach would treat the estimated cumulative effect of changed conditions due to climate change similarly to the approach being taken to account for growth
- Jurisdictions would develop Phase III WIPs which account for the estimated increased pollutant loads

Numerical Approach: Pros & Cons

ProsCons• Comprehensive, straight-forward
approach• Potential change in the level of effort
required to meet water quality standards• Demonstrates Partnership's commitment
to Chesapeake Bay Agreement Climate
Resiliency Goal• If implemented in isolation (w/o the
programmatic approach), would not
address the anticipated impacts of
climate change on BMPs

- Near-term response
- Implemented in sequence with development of Phase III WIPs

Programmatic Approach

- An "adaptive management approach" that would be implemented through the two-year milestone process
- Would not change a jurisdictions' planning targets
- Directs the Partnership to collect and consider new information on the performance of BMPs, including the contribution of seasonal, inter-annual climate variability, and weather extremes.
 - Jurisdictions would assess this information and adjust plans, over-time, to better mitigate anticipated changes in loads and impacts on the performance of BMPs.
- Would require the inclusion of a narrative strategy in Phase III WIPs, describing a jurisdictions' programmatic commitments to address climate change.
 - A sample "*narrative strategy*" would be provided to jurisdictions to guide implementation.

Programmatic Approach: Pros & Cons

Pros	Cons
Adaptively managing for long-term	• If implemented in isolation (w/o numeric
change	approach), delays substantive action to
Allows for use of local expertise and	address climate change in the near-term
knowledge	• Lack of specific technical understanding to
• Provides for learning across jurisdictions	guide implementation
about methods and results	 Requires additional monitoring and
• Allows for flexibility in jurisdictions'	assessment efforts
approaches to addressing climate change	Inconsistency in implementation across
Provides standard elements to be	jurisdictions

addressed

Requested WQGIT Policy Recommendation

- Recommend a numerical and/or programmatic approach to guide jurisdictions' development and implementation of Phase III Watershed Implementation Plans.
- Recommend the level of flexibility among jurisdictions, as well as commitments for CBP programmatic support (e.g., guidance, data, funding, etc.), for implementation of climate change policies that exceed the Partnership approved policy.

Accounting for Changed Conditions: Climate Change

PSC-Approved Guiding Principles WIP Development

- Capitalize on "Co-benefits" maximize BMP selection to increase climate resiliency
- Account for and integrate planning and consideration of existing stressors consider existing stressors in establishing reduction targets or BMP selection
- Align with existing climate resilient plans and strategies document jurisdictions' action plans and strategies to address climate change
- Manage for risk and plan for uncertainty employ risk management and flexible implementation strategies to achieve and maintain water quality standards
- Engage Local Agencies and Leaders work cooperatively with local partners to provide best available data on local impacts

PSC Approved Guiding Principles WIP Implementation

- Reduce vulnerability use "Climate Smart" principles to site and design BMPs
- Build in flexibility and adaptability allow for adjustments in BMP implementation to consider potential uncertainties and response options
- Adaptive manage allow for changes in BMP selection or WIP implementation over-time

Adopt a dual approach to factor climate change into the Phase III WIPs

- 1. Adopt a programmatic approach to address climate change
 - Include a narrative strategy in the Phase III WIPs that describes the jurisdictions' current action plans and strategies to address climate change, as well as the jurisdiction-specific nutrient pollutant loadings due to 2025 climate change conditions (derived using the planning targets methodology)
 - Incorporate local priorities (e.g., flooding) and actions to address climate change impacts
 - Document the current understanding of the science and identify the research gaps and needs, and what we hope to learn over time given the current state of uncertainty (e.g., a better understanding of the BMP responses, including new or other emerging BMPs, to climate change conditions)
 - Identify a date by which the Partnership will provide additional science and information to help inform implementation efforts to address climate change (early 2021 to inform 2022-2023 milestones?)

Adopt a dual approach to factor climate change into the Phase III WIPs

- 2. Document and communicate additional nutrient pollutant loads of up to 9 million pounds of nitrogen and 0.5 million pounds of phosphorus due to 2025 climate change conditions
 - Continue to understand the nature and effect of climate change impacts in the watershed and estuary to inform management strategies (e.g., WIP/2-year milestones)
 - By [insert date], develop recommendations for new and/or refined methods and modeling techniques to better assess projected impacts on watershed loads and estuarine impacts for a range of future scenarios, including the methodology used to develop jurisdiction-specific nutrient pollutant loads due to 2025 climate change impacts
 - By [insert date], consider results of updated methods, techniques, and studies and revisit whether to explicitly account for those additional nutrient pollutant loads due to 2025 climate change conditions in the Phase III WIPs and/or 2-year milestones
 - Identify a date (post-2025) by which the Partnership will fully address the additional nutrient pollutant loads in a Phase III WIP addendum and/or 2-year milestones

Provide the jurisdictions with the **flexibility** to explicitly account for additional nutrient pollutant loadings due to 2025 climate change impacts in their Phase III WIPs and/or 2-year milestones **prior to the Partnership agreed-upon date**