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Overall Project Aims

• We are aiming to:

• Develop future projections of estuarine habitats, and responses of living marine 
resources, using statistically downscaled climate models for the northeast US region 

• Rather than developing a comprehensive suite of projections, we are particularly 
interested in assessing the sensitivity of projections to the downscaling method used

• Potential biological impacts include:

• Distribution: how will target species be distributed?

• Phenology: when will different life stages of target species be present in different 
habitats?

• Thermal stress: at what point will conditions become physiological stressful

• Recruitment: how favorable will conditions be for juvenile survival?
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GFDL CM2.1 Global Climate Model

Climate model resolution and estuarine environments

• Global climate models (GCMs) are generally too coarse to resolve local-scale dynamics, such 
as those in rivers or estuaries

• Models are often downscaled to a regional study area 

• Statistical downscaling: relies on present-day relationships 
between coarse and fine-scale processes

• Procedure:

1. Locate long-term, historical in situ time series
2. Extract global climate model historical and future 

projections for same location
3. Use regression, quantile mapping or other mathematical 

techniques to replicate past variability
4. Apply to future projections

• Assumptions:
• Stationarity: that past relationships between coarse and 

fine scale dynamics will continue into the future:
• See http://www.gfdl.noaa.gov/esd_eval for publications, 

presentations, and further explanation

Model Atmosphere Ocean

CM2.1 2.0° 1.0°

CM2.5 FLOR 0.5° 1.0°

CM2.5 0.5° 0.25°

CM2.6 0.5° 0.1°

Other GFDL GCMs

http://www.gfdl.noaa.gov/esd_eval
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Not to mention land use, sea level rise, 
water column dynamics, ecological factors etc…

Sources of uncertainty



Statistical downscaling methods
• In this study, global climate model projections were downscaled using five methods:

• Bias correction quantile mapping (BCQM)
• Change factor quantile mapping (CFQM)
• Equidistant quantile mapping (EDQM)
• Cumulative distribution function transform (CDFt)
• A modified delta method

Example: Statistical Downscaling using Quantile Mapping
Biases are calculated for each percentile in the cumulative distribution function from present simulation (blue). Then the calculated biases 
are added to the future simulation to correct the biases of each percentile (NASA JPL)



Selecting global climate models for downscaling
• There are >50 global climate model runs available from CMIP5 from ~28 institutions

• Each of these has different bias characteristics in the northeast US region

• Models which are good at reproducing temperature might not also be good at reproducing precipitation

• We started with the IPSL-CM5A-LR model, due to low temperature bias in the region, and CO2 representative 
concentration pathway (RCP) 8.5
• We will extend our approach to other GCMs (ensembles?) and RCPs (probably 4.5) in the future

-40

-30

-20

-10

0

10

20

30

GCM Bias Eastern North America: Precipitation

DJF

JJA

-3

-2

-1

0

1

2

3

4

5

6

GCM Bias Eastern North America: Air temperature

DJF

JJA

Sheffield et al., (2013)



Downscaling: observations and GCM grid points
• The first step of the downscaling process is to find 

observation stations with a sufficiently long time series
• Air temperature in Chesapeake Bay was available from the 

Thomas Point buoy (1985-present)

Susquehanna watershed

Susquehanna River

Chesapeake Bay bathymetry

Thomas Point buoy



Downscaling: observations and GCM grid points
• The first step of the downscaling process is to find 

observation stations with a sufficiently long time series
• Air temperature in Chesapeake Bay was available from the 
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• Air temperature in the Susquehanna River watershed was 
sourced from eight observation stations (1970-present)
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Downscaling: observations and GCM grid points
• The first step of the downscaling process is to find 

observation stations with a sufficiently long time series
• Air temperature in Chesapeake Bay was available from the 

Thomas Point buoy (1985-present)

• Air temperature in the Susquehanna River watershed was 
sourced from eight observation stations (1970-present)

• Precipitation in the Susquehanna River watershed was 
available from the CPC gridded unified gauge-based analysis 
of daily precipitation 
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Downscaling: observations and GCM grid points

• We used a point near Delaware Bay to 
represent estuarine conditions at the 
Thomas Point buoy 

• Two grid points were located within the 
Susquehanna River watershed

• We downscaled the watershed 
observations to the nearest available 
grid point

• The first step of the downscaling process is to find 
observation stations with a sufficiently long time series
• Air temperature in Chesapeake Bay was available from the 

Thomas Point buoy (1985-present)

• Air temperature in the Susquehanna River watershed was 
sourced from eight observation stations (1970-present)

• Precipitation in the Susquehanna River watershed was 
available from the CPC gridded unified gauge-based analysis 
of daily precipitation 

• The next step is to select appropriate GCM grid points

Susquehanna watershed

Susquehanna River

Chesapeake Bay bathymetry
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Obs. air temperature station

Obs. precipitation grid point

GCM grid point



Variables of interest

• Air temperature:

• Drives estuarine surface water temperature through heat exchange at water-air interface

• Influences evaporation in the watershed: how much precipitation is converted to runoff

• Influences snow pack dynamics and snow melt in the watershed

• Precipitation:

• Drives soil moisture, runoff, and streamflow into estuary

• Streamflow influences river and estuarine salinity

• Both local estuarine and watershed dynamics are thus important for predicting estuarine 
conditions

• First step: can we predict estuarine conditions using only these atmospheric variables?



Estuarine water temperature
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Correlation: air vs water temperature

• Water temperature integrates air temperature through time, and so varies at lower 
frequency, with a slight seasonal lag

• Data from the Thomas Point buoy showed that a 17 day moving mean of air temperature 
best predicted water temperature

Mean seasonal cycle: air vs. water Air vs. water correlation: different lags
Thomas Point



R2=0.99R2=0.98

Estuarine water temperature
• The 17 day moving mean of air temperature was well correlated with water temperature

• However, the relationship was non-linear at extreme values

• Following Mohseni & Stefan, 1999, we applied a sinusoidal correction to the relationship, to 
account for the “leveling off” of water temperature at very cold and very warm air 
temperatures

• Important for extrapolation as air temperatures exceed current values

R2=0.9

Daily air vs. water temperature 17 day air vs. water temperature Adj. 17 day air vs. water temperature



Downscaled temperature results
• Air temperature projections using downscaled methods were slightly warmer than those 

from the GCM at cooler (>14°C) temperatures

• The models diverged significantly at high (>26°C) air temperatures, as a result of the 
extrapolation procedures allowed by each model

-12

-4

4

12

20

28

36

-14 -10 -6 -2 2 6 10 14 18 22 26 30

Te
m

p
e

ra
tu

re
: 

D
o

w
n

sc
a

le
d

 (
°C

)

Temperature: GCM (°C)
Delta CFQM CDFt EDQM BCQM 1:1 Ratio

Models vary 
by ~7°C

Scatterplot of monthly air temperatures from the IPSL GCM, and the five downscaling methods



Downscaled temperature results
• As a result, projections of seasonal water temperature cycles varied

• The GCM was warmer than the downscaled models in spring and fall, but slightly cooler in 
mid-summer

Seasonal water temperature cycle: 2070-2100
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Downscaled temperature and biological models

• Applying temperature projections to simple biological models shows the effects of model divergence

• Model 1: date of alewife spring spawning initiation (based on a 3 day 10°C threshold)

• All projections showed a shift to earlier spawning by 2100

• However the downscaled models were more conservative than the GCM, due to cooler projected 
spring temperatures

Probability of water temperature >10°C for 3 consecutive days: 2070-2100. Present day (1985-2010) mean also shown

Earlier spawning



Downscaled temperature and biological models

• Applying temperature projections to simple biological models shows the effects of model divergence

• Model 2: thermal acclimation scope of juvenile alewife during summer (based on Otto, 1976)

• All projections predicted lower thermal scope by 2100

• However the downscaled models were less conservative than the GCM, due to warmer projected 
summer temperatures

Thermal acclimation scope for juvenile alewife: 2070-2100. Present day (1985-2010) mean also shown
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Estimating freshwater flows

McCabe & Markstrom, USGS

Susquehanna

Potomac

• Step 2: can we predict river inflow from precipitation?

• The two largest contributors of freshwater flow to the Chesapeake Bay are the Susquehanna (~50%), and 
Potomac (~30%) Rivers

• We constructed a monthly water balance model for the Susquehanna watershed using observed precipitation
and temperature from 1970 – 2006

• The model assigns precipitation to soil storage, runoff or 
snowpack depending on calculated evapotranspiration
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Potential evapotranspiration
• Many models are available, with varying complexity and temperature-dependence (see Milly 

presentation)
• Simple is better for our purposes … but may introduce additional bias

• Bias and error characteristics vary depending on watershed vegetation (Vorosmarty et al., 1998)

• Results shown here for Hamon only

Vorosmarty et al., 1998
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Water balance model results
• The initial water balance model showed good correlation with observations, but had a negative 

bias during winter and spring 

• We determined that this was most likely due to wind-induced under-catch of snowfall in 
precipitation gauges
• We used the CPC Unified Gauge-Based Gridded Precipitation dataset as observations

• A snow correction assuming 55% snow catch ratio was applied, based on mean winter-spring 
wind speeds (4-6 m/s)

Snow catch vs wind (Larsen, 1974)Water balance model vs. observations: 1970-2006
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Water balance model results
• The snow correction improved the winter-spring bias in the model substantially

• The water balance model now showed good correlation and low bias across the 30 year 
observation series

• Only very large flood events (e.g. hurricanes) were now under-estimated

• (This correction was not applied to GCM fields)



Downscaling precipitation and streamflow
• Catchment precipitation was over-estimated by the GCM in the historical period

• As a result, downscaled precipitation projections were lower than those from the GCM

• Similarly to estuarine temperature, downscaled temperatures were warmer than those from 
the GCM, and diverged strongly at >26°C

• A combination of lower precipitation and warmer temperatures in the downscaled projections 
resulted in lower projected streamflow than in the GCM

The same for watershed temps
Then for runoff: so can see contributions
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• Both the GCM and downscaled models (except Delta) projected a modest decrease in annual 
Susquehanna River streamflow through 2100

• Largely due to temperature: precipitation varied without a strong trend through to 2100
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Downscaling precipitation and streamflow



• How reliable is this modeled reduction in streamflow?

• We compared results from the water balance model to runoff directly from the GCM

• In winter, the downscaled models showed a reduction in streamflow, while both methods 
from the GCM (water balance model and direct calculation) did not

• However, trends in other seasons were less clear

Downscaling precipitation and streamflow
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• Water temperature and Susquehanna River streamflow could both be 
predicted from observations of atmospheric variables during the recent past

• Results from downscaled models were similar for both temperature and 
precipitation, except when air temperatures exceeded ~26°C

• Implications for biological impact models using temperature

• Downscaled models generally projected warmer temperatures and lower 
precipitation than the GCM, resulting in lower Susquehanna River streamflow

• Downscaling among these methods (statistical, not dynamical) will likely 
contribute less to overall uncertainty than choice of GCM, or RCP, except 
maybe at upper temperature limits (…but still should be considered) 

• Consider and communicate multiple sources of uncertainty

Conclusions



• We would like to extend this work to consider spatial models of temperature 
and salinity across the bay

• More complex biological impact models will be investigated, including those 
with streamflow effects

• The effect of downscaling climate models to drive these, and the effect of 
using different downscaling techniques, will be further described

• Additional GCMs, additional RCP scenarios, and additional study sites in the US 
will be included (as a function of available time)

Future directions
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