

Locating and Selecting Scenarios On-line (LASSO)

Presentation to the STAC Climate Change Scenarios Workshop March 7-8, 2016

Phil Morefield

Office of Research and Development National Center for Environmental Assessment

The views expressed in this presentation are those of the author and they do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency

Making the case for heuristics

 A heuristic technique is any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect, but sufficient for the immediate goals.

€PA

- Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution.
- Heuristics can be mental shortcuts that ease the cognitive load of making a decision. Examples of this method include using a rule of thumb, an educated guess, an intuitive judgment, or common sense.

-Wikipedia

Existing Climate Tools

These are great tools, but....

- 1. Spatially and temporally constrained summaries
- 2. No ability to download GIS-ready data
- 3. No guidance on what data to use

USGCRP Climate Explorer

USGS Derived Downscaled Climate Projection Portal

USGS National Climate Change Viewer

SEDA

Motivating Questions

• Which climate projections should I use?

- "It depends…"
 - Do you need to examine the full range of uncertainty?
 - Are you looking for a central estimate of change?
 - Do you care about precipitation, temperature, or both?
 - What is your study area?
 - What time period are you interested?
 - What interval are you interested in?

"Okay, now where can I download them?"

Specific Project Goals

- Enable the target audience
 - GIS people
 - Modelers

- 2. Make it embarrassingly simple
- **3.** Make it flexible
- 4. Leverage existing climate change projection information
- **5.** Make it extensible
- **6.**Inform "Paradigm Two" approaches

Introducing Bi-plots

Example #1: The Lasso

SEPA

Example: Four Corners

Example: The Lasso + Middle of the Pack

SEPA

Caution: More Uncertainty Ahead

SEDA

Additional comments

- Be flexible; incorporate learning (Chris Weaver)
- Bi-plot parameters should be chosen thoughtfully
 - What variables matter over what time period?
- No promise of optimality
- Limited set of statistics/variables at this time
- No control of underlying data
- No analysis
- Requires THREDDS/OPeNDAP servers
- Limited mapping and visualization capability

SEPA

What data can LASSO target?

- Currently
 - BCSD-CMIP3
 - BCSD-CMIP5
 - Monthly
 - I/8th degree
 - Precipitation and temperature
- Up Next

- <u>BCCA-CMIP5</u>

- Daily
- I/8th degree
- Precipitation and temperature

SEPA

After that?

-<u>MACA</u>

- Daily
- 4 km or ~ 6 km
- Precipitation, temperature, relative/specific humidity, solar radiation, wind speed/direction

Not available for LASSO yet

- BCSD-CMIP5 Hydrologic Projections
 - Includes output from the VIC model forced with observed and projected climate
 - I/8th degree
 - Daily

- Precipitation, temperature, wind speed, baseflow, surface runoff, total runoff
- Monthly
 - Precipitation, temperature, wind speed, baseflow, surface runoff, total runoff, ET, PET (x6), relative humidity, soil moisture content, snow water equivalent, net radiation

SEPA Ti

Timeline

- Q2 2016 working beta version
- Q2/Q3 2016 webinars and formal beta testing
- December 2016 Final web application
 - Global Change Explorer: http://globalchange.epa.gov