DELAWARE CLIMATE PROJECTIONS: METHODS AND FINDINGS

Using statistical downscaling to develop statewide climate projection data

Presentation to Chesapeake Bay Program STAC Workshop – March 8, 2016 Delaware Division of ENERGY CLIMATE

Jennifer de Mooy

Choice of methodology and consultant

Drs. Katharine Hayhoe, Anne Stoner, and Rodica Gelca ATMOS Research & Consulting

- Nationally-known atmospheric scientists
- Methodology used in downscaling projections for National Climate Assessment and other states/regions
- Use of both CMIP3 and CMIP5 global climate models
- Wide selection of climate indicators
- Coordination with state climatologist

Scenarios, Models, and Method

IPCC: 2010 Representative Concentration Pathways (RCP)

SCENARIOS

 We selected two scenarios: higher (RCP 8.5) and lower (RCP 4.5), for a time frame through 2100

MODELS

 Climate projections were based on simulations from four CMIP3 global climate models and nine CMIP5 global climate models

METHOD

 Statistical Asynchronous Regional Regression Model (ARRM)

Climate Indicators

- Analysis used observed weather data from 14 individual long-term weather stations in Delaware
- Indicators for temperature, precipitation, and secondary indicators - relative humidity, heat index, and potential evapotranspiration – 155 total
- Indicators generally grouped by averages and extremes

Climate Indicators

TEMPERATURE INDICATORS

Average Temperature Indicators:

- Maximum Temperatures
- Minimum Temperatures
- Average Temperatures
- Temperature Range

Extreme Temperature Indicators:

- Cold nights (min. <20°F and <32 °F)
- Hot days (max. > 90,95,100,105°F)
- Warm nights (min. > 80, 85, 90 °F)
- Heat wave events of 4+ days

Other Temperature Indicators:

- Growing Season
- Energy-Related Temperature Indicators

PRECIPITATION INDICATORS

Average Precipitation Indicators:

- Average Precipitation
- Cumulative precipitation for 3-, 6-, and 12 Month averages

Extreme Precipitation Indicators:

- Precipitation Intensity
- Heavy precipitation days (> 0.5, 1,2,3,4,5,6,7,8 inches in 24 hours)
- Amount of precipitation in wettest events
- Dry Days, dry periods

Humidity Hybrid Indicators

- Dewpoint Indicators
- Relative Humidity
- Heat Indices
- Potential Evapotranspiration

TEMPERATURE AVERAGES AND EXTREMES

Averages: Continued increase in temperatures

Source: Hayhoe, Stoner, Gelca (2013)

Annual and seasonal temperatures are projected to increase, with slightly greater increases in summer as compared to winter

Extremes: More days exceeding threshold values

Extreme heat days and heat waves are becoming more frequent; extreme cold, less frequent

Source: Hayhoe, Stoner, Gelca (2013)

PRECIPITATION AVERAGES AND EXTREMES

Averages: Annual precipitation increases

Annual precipitation projected to increase, mostly due to changes in winter and fall.

Source: Hayhoe, Stoner, Gelca (2013)

Extremes: Days of heavy precipitation increase

Heavy precipitation expected to become more frequent as precipitation becomes more intense.

Source: Hayhoe, Stoner, Gelca (2013)

Making the data available

Delaware Climate Change Impact Assessment

http://www.dnrec.delaware.gov/energy/Pa ges/The-Delaware-Climate-Impact-Assessment.aspx

Delaware Climate Projections Portal

http://climate.udel.edu/declimateproje ctions/

Implications for Water Resources

Increased temperature	Increased precipitation intensity
Increased water demand for irrigation, power generation, and domestic use due to higher summer temperatures	Peak flows exceeding capacity of wastewater and stormwater systems during extreme rain events
Higher water temperatures, leading to reduced dissolved oxygen and poorer water quality	Contaminated runoff and pollutant transport due to more frequent flooding
	Changes in timing of seasonal flows, related to more precipitation falling as rair

vs. snow

Implications for Nutrient Management

Increased temperatures	Increased precipitation intensity
Air quality impacts from ammonia release due to increased volatilization losses of ammonia-N.	Prolonged and intense periods of precipitation will increase runoff of sediment and nutrients to surface waters.
Reduced N use efficiency, due to increased volatilization of surface-applied ammonia-based fertilizers or poultry manures.	Extreme rain events increase the risk of nutrient losses from overflow of manure storage facilities.
Nitrate leaching from sandy soils as manure organic N will be converted to nitrate-N more quickly and completely in warmer soils.	Application of organic nutrient sources may be delayed or made more difficult in wet conditions following extreme rain events, and may lead to increased nutrient losses .