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Today’s presentation
Upper Chesapeake Bay climate assessment

Upper Chesapeake LLTAR
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USDA’s LTAR Network

serving as a sentinel to changes in climate and hydrology
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Upper Chesapeake Bay LTAR

Four basins typifying variable physiography and farming
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The Mahantango Creek Watershed

an ideal place to assess long-term trends in hydroclimate
Precipitation (1968 to present)




Significant hydroclimatic trends in WE-38
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Climate change in the Upper Chesapeake

Using downscaled data to project future climatic conditions
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We obtained climate projections from
nine dlfferent climate models

Russian Academy of Sciences

[ustitute of Numerical Mathematics

Internatiorjal Cen'tre erer i ‘.r.‘ -_3 7 e ﬁ I\'IetmmlunlralRewanh Institute Max—P\anck-\ns‘t_nut
'~ for Earth Simulation aplace ] =S fir Meteorologie

Daily climate variables

Max temp. (°C) Min temp. (°C)

Precip. (mm) Wind speed (m/s)




Mid-century temperatures will be warmer
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A warmer climate means more extremes
daily max temperatures may approach 42 °C by century’s end
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Mid-century will be wetter
increases will range from 5 to 15% relative to 1960-1989
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Daily rains of 25 mm will be more routine

with 5 more such days by the year 2100
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Paradoxically, the future also could be drier
Evaporative demand is likely to overwhelm inputs from rain
Longer dry spells Increased risk of drought

Soll Moisture (SM-30cm)

Change in max consecutive dry days (%)
<@ [ [ e Standardized soil moisture (0-30 cm; deviations from 20t

20 5 10 S0 520 century mean) for 2090 to 2099 using the RCP 8.5 emissions
scenario (Cook et al., 2015; Science Advances).

More than 80% of climate Take home point: more rain is needed
models suggest that successive to keep pace with rising evaporative
dry days will rise by 5 to 10%. demand (Sherwood and Fu, 2014).

US National Climate Assessment, 2014; Sherwood and Fu, 2014




Implications for the Upper Chesapeake
Simulating potential climate change impacts in small basins
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Climate change and watershed hydrology
How will the water balance change with climate change?

Precipitation or streamflow depth (mm)
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Climate change and watershed hydrology
How will climate change affect runoff generation patterns?

Runoff (mm)
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Climate change and watershed hydrology
How will the frequency of floods and low flows change?
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Climate change and water quality
Effects of current climate and land use on water quality

Images courtesy of Tamie Veith and Amy Collick
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Climate change and water quality
Relative effects of climate and land use change on water quality

Land mgmt. and BIVIP allocation using PAS VIR (thru 202<

Farm Infrastructure
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Images courtesy of Tamie Veith and Amy Collick
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