- Reservoir capability to store sediments is at a maximum after construction
- Over time sedimentation changes the hydrodynamics of the reservoir
- As the reservoir becomes more shallow velocities increase
- Increased velocity results in higher bed shear stress and scour potential
- Turbulence increases at lower discharges increasing sediment transport

Bed Scour Potential
$$au_b = rac{\gamma v^2 n^2}{1.49^2 y^{1/3}}$$

Bed Shear Stress - force per unit area on the bed due to fluid flow

 γ = Specific Weight v = Velocity n = Manning n Roughness Coefficient y = Depth

Turbulence Intensity
$$U_* = \sqrt{\frac{\tau_b}{\rho}}$$
 Shear Velocity - indicator of turbulence intensity

Sediment Transport Potential $R = \frac{W_s}{U_*}$

 $=\frac{W_S}{II}$ Ro

Rouse Number - turbulence intensity for maintaining sediment in suspension

 $w_{\rm s}$ = Sediment Fall Velocity U_* = Shear Velocity

Study Goal

- Evaluate Changes in Bathymetry and Hydrodynamics for 1996 2011
- Emphasize the Lower 4 Miles of Conowingo Reservoir
- Compare Bathymetry Changes for Miles 1 4 From the Dam
- Simulate Hydrodynamics for Range of Flows: 300,000 400,000 cfs
- Use the University of Mississippi Model CCHE₂D for the Simulations
- Evaluate the Changes in Velocity and Bed Shear Stress
- Present Results from AdH Calculations of Excess Sediment Load Due to Bathymetry Changes Between 1996 and 2011

Model Results: Bed Elevation Comparisons – 1996 – 2011 All Views Looking Upstream

Model Results: Velocity and Bed Shear Comparisons – 1996 - 2011

300,000 cfs

Model Results: Velocity and Bed Shear Comparisons – 1996 - 2011

350,000 cfs

Model Results: Velocity and Bed Shear Comparisons – 1996 - 2011

400,000 cfs

AdH Simulation of Sediment Bed Scour Due to Bathymetry Change – 1996-2011 (LSRWA)

GOAL: Simulate a number of hydrographs to evaluate bed scour differences between the 1996 and 2011 bathymetries

AdH Simulation of Sediment Bed Scour Due to Bathymetry Change – 1996-2011 (LSRWA)

Discharge - cfs	Sediment Load - tons
50000	0
100000	0
150000	74
200000	3,008
250000	21,957
300000	34,814
350000	79,194
400000	233,804
*600000	1,200,000

Note: Additional sediment load is ~ 5% of total hydrograph load passed below Conowingo Dam

Conclusions

- The trapping efficiency of Conowingo Reservoir is reduced due to sedimentation
- Decreased reservoir depth results in increased flow velocity and bed shear stress
- Sediment erosion, entrainment, and transport is potentially increasing for a given discharge
- A quasi-equilibrium condition exists in the reservoir with storage temporarily increased by large storms