BMP Evaluation and Design Improvement

David J. Sample
Biological Systems Engineering

Presentation at the Chesapeake Bay Program Science and Technical Advisory Committee (STAC)-sponsored Workshop Evaluating Proprietary BMPs, is it Time for a State, Regional or National Program? Northern Virginia Regional Commission, Fairfax, VA March 24, 2015
Outline

- Adaptive management in design
- Stormwater quality and BMP effectiveness
- Monitoring to support design
- Modeling to support design
 - Computational model
 - Physical model
- Balancing competing interests in BMP evaluations
Adaptive Management in Design

1. Problem Definition
2. Site Characterization
 - Identify Constraints
3. Identify Applicable Fundamental Treatment Unit Processes
4. Select Treatment System Components
5. Assess/Refine Treatment System Components
6. Size and Develop Conceptual Design of Treatment Systems
7. Final Design, Construct System
8. Operate and Maintain System
9. Adaptive Management
 - Monitor Systems
 - Evaluate Performance, Effectiveness
 - Refine Designs
 - Retire/Replace
10. Final Design, Construct System

Adaptive Management in Design
Stormwater Quality is highly variable:
- Spatial
- Temporal

Function of:
- Land use/imperviousness
- Slope, vegetation
- Soils

BMP Efficiency Varies

- RRM, literature review, expert panel assessment
 - Level 1 - median removal efficiency
 - Level 2 - 3rd quartile (75%) removal efficiency

<table>
<thead>
<tr>
<th>Practice</th>
<th>Total Nitrogen</th>
<th>Total Phosphorous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RRM TNR (%)</td>
<td>Koch et al. TNR (%)</td>
</tr>
<tr>
<td></td>
<td>Q50</td>
<td>Q75</td>
</tr>
<tr>
<td>ED Pond</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>Wet Pond</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Wetland</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>Swale</td>
<td>25-55³</td>
<td>35-74³</td>
</tr>
<tr>
<td>Bioretention</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand Filter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Infiltration</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RRM TPR (%)</th>
<th>Weiss et al. TPR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q50</td>
<td>Average⁵</td>
</tr>
<tr>
<td>ED Pond</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Wet Pond</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>Wetland</td>
<td>50</td>
<td>42</td>
</tr>
<tr>
<td>Swale</td>
<td>55</td>
<td>72</td>
</tr>
<tr>
<td>Bioretention</td>
<td>60</td>
<td>46</td>
</tr>
<tr>
<td>Sand Filter</td>
<td>63</td>
<td>65⁶</td>
</tr>
</tbody>
</table>

BMP Monitoring and Assessment

- Hydraulic Monitoring (mass-in, mass-out)
- Paired watershed monitoring
 - Spatial
 - Temporal
- Models
 - Computational
 - Physical
Computational Modeling for BMP Design
City of Fairfax, Virginia

Watershed: 139 acres (56.2 ha)

Impervious surface: 40%

Ashby Pond Characteristics

- V = 111,156 ft3 (188,179.2 m3)
- A = 61,239 ft2 (2,914 m2)
- Age: about 25 years
Model/Design Objective: Storage (2-yr)
Physical Models/Mesocosms

- Applied in bioretention, floating wetlands
- Advantage: replication, controlled conditions
Balancing Competing Interests

- Balancing:
 - Science
 - Water quality/regulation
 - ROI

- Risk has to be managed, cannot be avoided