Agricultural Ditch Management on Maryland's Eastern Shore

Roadside Ditch Management Workshop

Jason Keppler Maryland Department of Agriculture

Ditch Drained Systems

- * Flat, low-lying, poorly drained coastal plain soils
- * Land drainage closely associated with agricultural use
- Primarily corn, wheat and soybeans rotation
- High density poultry production has led to elevated soil P

Public Drainage Associations

- * Approximately 821 miles of managed drainage ditches on Eastern Shore
- * 207,000 acres benefited
- * 1st recorded Long Marsh 1789
- * Public Drainage Associations
 - * 100 associations
 - Collect taxes for upkeep and maintenance

Poorly drained agricultural land

Artificial drainage has modified hydrology

* Ditching

- * Placed 2-4 feet below surface
- * Lowered water tables
- More efficient transport of water
- * Tile drainage
 - Lowered water tables
 - Piped surface and groundwater

Ditching and tile drainage is effective, but....

- * Concentrates nitrate
- * Reduces processing
 - * Loss of ecosystem services
- * Increases transport

Practice Options

- * Water Control Structures
- * Hydromodifications
- * Weed Wiper
- * Bioreactors
- * Passive Phosphorus Removal Systems

Water Control Structures

- * USDA Natural Resources
 Conservation Service Practice
- Regulates water in a drainage system to manage the outflow of drainage water
- Controls water surface

 elevations and discharge from
 surface and subsurface
 drainage

Inlet vs Inline Water Control Structure

Benefits of Implementation

- * Improve water quality
 - Denitrification
 - * Reduce soil erosion
 - * Trap sediment
- Improve soil environment for vegetative growth
- Reduce the rate of oxidation of organic soils
- * Reduces flashiness of drainage system
- Wildlife habitat seasonal shallow flooding

Research

- * North Carolina Robert Evans (1989)
 - * Neuse River Watershed
 - * 45% N reduction
 - * 35% P reduction
 - * Based on pounds/acre/year
- * Delaware DNREC (2004)
 - * 33% N reduction
 - * Did not assign P reduction efficiency
- * Chesapeake Bay Program (2005)
 - * Approved agricultural BMP for nutrient reduction credit
 - * 30% N reduction

Cost-Share Assistance Available

- 87.5% through MACS
 Program
- * Up to \$20,000
- * 10 year maintenance life
- * Maintenance agreement

Hydromodifications

Weed Wiper

- Selectively targets tall woody vegetation and brush without harming the low growing vegetation
- Used to stabilize and protect the ditch slopes
- Allows for increased wildlife habitat

Bioreactors

Basics

Components

Nitrate Removal

Water with dissolved nitrates flows into a wood chip pit. The wood chips serve as a home and food for bacteria in the low-oxygen environment. Bacteria convert nitrates into dinitrogen gas, and water flows from the output minus nitrates.

Nutrients

Nitrate (mg/l)

	Box 1	Box 2	Box 1	Box 2		
	NO3-N	NO3-N	NO3 Load	NO3 Load	Load	Concentration
Date	(mg/l)	(mg/l)	(lbs/d)	(lbs/d)	Reduction	Reduction
11/20	9.14	0.07				99.28%
11/26	9.13	0.07				99.28%
11/27	0.97	0.32				67.18%
12/3	0.01	0.03	0.000	0.000	-97.86%	-97.86%
2/7	13.41	0.68	3.307	0.033	15.60%	94.92%
2/12	20.60	0.03	14.977	0.003	10.73%	99.85%
2/17	13.64	0.91	5.973	0.080	15.55%	93.33%
3/11	17.50	0.10	12.723	0.005	6.01%	99.43%
4/28	2.41	0.10	0.114	0.009	62.29%	95.85%
AVERAGE	9.65	0.26	6.18	0.02	22.0%	94.0%

How well are they working?

- * Highly efficient at reducing nitrate
 - * 94%-98% efficiency (concentration)
- * Load reduction low
 - * Amount of water diverted into bioreactor
 - * 22% load reduction
- * Ammonium treatment variable
 - * Depends on influent concentration
 - * Source during periods of low influent concentration
- * Bioreactor is leaching phosphorus
 - * High at onset as bound phosphorus is freed (anaerobic conditions)
 - * Will continue at some level

Effectiveness

- * 23% to 98% reduction in nitrate load
 - * Temperature
 - * Retention Time
- * Lifespan of greater than 15 years
- * Low Maintenance
- * Cost Effective
 - * Less than \$3.50 per kg N removed
- * Edge of field

Drawbacks

- * Some N2O production
 - * Negligible to 4 %
 - * Higher during cold conditions
- * May cause methylation of mercury
 - * Rare
 - * Occurs if sulfate reducing conditions present

Passive Phosphorus Removal Systems

Ditch P Transport

- * Legacy P releases dissolved P over many years
- There are no BMP's designed to control dissolved P transport
 - dissolved P is most dangerous to aquatic ecosystems
- * Ditches provide direct transport path for dissolved P
- Majority of the P in ditches gets there through shallow subsurface flow
- * Ditches provide ideal collection point for treatment

Basic Ditch Filter

- Structure filled with P sorbing materials (PSMs)
 - Any material that chemically sorbs P through precipitation or fixation reactions
 - Fe, Mg, Al, or Ca containing materials, or combination of these elements
 - Typically focused on industrial residuals
- * Alter hydraulic head in ditch to force flow through filter material
- Confine material in some sort of structure

Confined Bed

- * Good for large filter
- Ideal for drainage swales that require high peak flow and little water backing
 - Achieved through shallow
 PSM with large surface
 area

Tile Drain

- Similar to bed, but without confinement
- * Allows large amount of material to be used
- Use flow control to build head
- * Low cost
- Probably best option, but there seems to bias with landowners

Box Filter

- * Easily switch out material
- Modular design integrates with flow control
 - * Agri-Drain
- * Small ditches or pond overflow
- Drawback: Small amount of material

Performance

- * Slag confined bed: 43% removal
- * Gypsum tile drain: initial (limited) data indicates 67% removal
- * Box style filter approximately 20% load reduction
 - Approximately 50% when flow is good
 - * Reduced FWMC of TP 25%
 - * Reduced FWMC of DRP 29%

- * To date model predicts P removal accurately
- Need robust field data to validate model and to predict overflow versus flow through
 - * 4 ditches with tile filters
 - * 3 ditches with cartridge filters
 - 2 ditches (1 ag and 1 golf course) with confined bed filters
 - * 1 retention pond with box filter
- Developing complete guidance for government and private stakeholders

Partners

ONRCS

Thank You

Jason Keppler Maryland Department of Agriculture jason.keppler@maryland.gov 410-841-5879