Agricultural Ditch Management on Maryland’s Eastern Shore

Roadside Ditch Management Workshop

Jason Keppler
Maryland Department of Agriculture
Ditch Drained Systems

- Flat, low-lying, poorly drained coastal plain soils
- Land drainage closely associated with agricultural use
- Primarily corn, wheat and soybeans rotation
- High density poultry production has led to elevated soil P
Public Drainage Associations

* Approximately 821 miles of managed drainage ditches on Eastern Shore
* 207,000 acres benefited
* 1st recorded Long Marsh 1789
* Public Drainage Associations
 * 100 associations
 * Collect taxes for upkeep and maintenance
Artificial drainage has modified hydrology

* Ditching
 * Placed 2-4 feet below surface
 * Lowered water tables
 * More efficient transport of water

* Tile drainage
 * Lowered water tables
 * Piped surface and groundwater
Ditching and tile drainage is effective, but....

- Concentrates nitrate
- Reduces processing
 - Loss of ecosystem services
- Increases transport
Practice Options

* Water Control Structures
* Hydromodifications
* Weed Wiper
* Bioreactors
* Passive Phosphorus Removal Systems
Water Control Structure
Water Control Structures

* USDA – Natural Resources Conservation Service Practice
* Regulates water in a drainage system to manage the outflow of drainage water
* Controls water surface elevations and discharge from surface and subsurface drainage
Inlet vs Inline Water Control Structure

Typical Installation of an Inlet Water Level Control Structure

Typical Installation of an Inline Water Level Control Structure
Benefits of Implementation

- Improve water quality
 - Denitrification
 - Reduce soil erosion
 - Trap sediment
- Improve soil environment for vegetative growth
- Reduce the rate of oxidation of organic soils
- Reduces flashiness of drainage system
- Wildlife habitat – seasonal shallow flooding
- Neuse River Watershed
- 45% N reduction
- 35% P reduction
- Based on pounds/acre/year

- 33% N reduction
- Did not assign P reduction efficiency

Chesapeake Bay Program (2005)
- Approved agricultural BMP for nutrient reduction credit
- 30% N reduction
Cost-Share Assistance Available

* 87.5% through MACS Program
* Up to $20,000
* 10 year maintenance life
* Maintenance agreement
Weed Wiper

- Selectively targets tall woody vegetation and brush without harming the low growing vegetation
- Used to stabilize and protect the ditch slopes
- Allows for increased wildlife habitat
Midwestern Solution

Components

Woodchip Trench

Basics
Nitrate Removal

Hungry Bacteria Magically Remove Nitrates

Tile Drained Row Crop Field
Inflow (Diversion) Structure
Outflow (Capacity Control) Structure

Water with dissolved nitrates flows into a wood chip pit. The wood chips serve as a home and food for bacteria in the low-oxygen environment. Bacteria convert nitrates into dinitrogen gas, and water flows from the output minus nitrates.

Denitrification Reaction Sequence

\[\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2 \]

Nitrate \hspace{1cm} Nitrite \hspace{1cm} Nitric Oxide \hspace{1cm} Nitrous Oxide \hspace{1cm} Nitrogen Gas
Nitrate (mg/l)

<table>
<thead>
<tr>
<th>Date</th>
<th>Box 1 NO3-N (mg/l)</th>
<th>Box 2 NO3-N (mg/l)</th>
<th>Box 1 NO3 Load (lbs/d)</th>
<th>Box 2 NO3 Load (lbs/d)</th>
<th>Load Reduction</th>
<th>Concentration Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/20</td>
<td>9.14</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td>99.28%</td>
</tr>
<tr>
<td>11/26</td>
<td>9.13</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td>99.28%</td>
</tr>
<tr>
<td>11/27</td>
<td>0.97</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td>67.18%</td>
</tr>
<tr>
<td>12/3</td>
<td>0.01</td>
<td>0.03</td>
<td>0.000</td>
<td>0.000</td>
<td>-97.86%</td>
<td>-97.86%</td>
</tr>
<tr>
<td>2/7</td>
<td>13.41</td>
<td>0.68</td>
<td>3.307</td>
<td>0.033</td>
<td>15.60%</td>
<td>94.92%</td>
</tr>
<tr>
<td>2/12</td>
<td>20.60</td>
<td>0.03</td>
<td>14.977</td>
<td>0.003</td>
<td>10.73%</td>
<td>99.85%</td>
</tr>
<tr>
<td>2/17</td>
<td>13.64</td>
<td>0.91</td>
<td>5.973</td>
<td>0.080</td>
<td>15.55%</td>
<td>93.33%</td>
</tr>
<tr>
<td>3/11</td>
<td>17.50</td>
<td>0.10</td>
<td>12.723</td>
<td>0.005</td>
<td>6.01%</td>
<td>99.43%</td>
</tr>
<tr>
<td>4/28</td>
<td>2.41</td>
<td>0.10</td>
<td>0.114</td>
<td>0.009</td>
<td>62.29%</td>
<td>95.85%</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>9.65</td>
<td>0.26</td>
<td>6.18</td>
<td>0.02</td>
<td>22.0%</td>
<td>94.0%</td>
</tr>
</tbody>
</table>
How well are they working?

* Highly efficient at reducing nitrate
 * 94%-98% efficiency (concentration)
* Load reduction low
 * Amount of water diverted into bioreactor
 * 22% load reduction
* Ammonium treatment variable
 * Depends on influent concentration
 * Source during periods of low influent concentration
* Bioreactor is leaching phosphorus
 * High at onset as bound phosphorus is freed (anaerobic conditions)
 * Will continue at some level
Effectiveness

* 23% to 98% reduction in nitrate load
 * Temperature
 * Retention Time
* Lifespan of greater than 15 years
* Low Maintenance
* Cost Effective
 * Less than $3.50 per kg N removed
* Edge of field
Drawbacks

* Some N\textsubscript{2}O production
 * Negligible to 4%
 * Higher during cold conditions
* May cause methylation of mercury
 * Rare
 * Occurs if sulfate reducing conditions present
Passive Phosphorus Removal Systems
Ditch P Transport

- Legacy P releases dissolved P over many years
- There are no BMP’s designed to control dissolved P transport
 - dissolved P is most dangerous to aquatic ecosystems
- Ditches provide direct transport path for dissolved P
- Majority of the P in ditches gets there through shallow subsurface flow
- Ditches provide ideal collection point for treatment
Basic Ditch Filter

- Structure filled with P sorbing materials (PSMs)
 - Any material that chemically sorbs P through precipitation or fixation reactions
 - Fe, Mg, Al, or Ca containing materials, or combination of these elements
 - Typically focused on industrial residuals

- Alter hydraulic head in ditch to force flow through filter material
- Confine material in some sort of structure
Confined Bed

- Good for large filter
- Ideal for drainage swales that require high peak flow and little water backing
 - Achieved through shallow PSM with large surface area
Tile Drain

* Similar to bed, but without confinement
* Allows large amount of material to be used
* Use flow control to build head
* Low cost
* Probably best option, but there seems to bias with landowners
Box Filter

* Easily switch out material
* Modular design – integrates with flow control
 * Agri-Drain
* Small ditches or pond overflow
* Drawback: Small amount of material
* Slag confined bed: 43% removal
* Gypsum tile drain: initial (limited) data indicates 67% removal
* Box style filter approximately 20% load reduction
 * Approximately 50% when flow is good
 * Reduced FWMC of TP 25%
 * Reduced FWMC of DRP 29%
* To date model predicts P removal accurately
* Need robust field data to validate model and to predict overflow versus flow through
 * 4 ditches with tile filters
 * 3 ditches with cartridge filters
 * 2 ditches (1 ag and 1 golf course) with confined bed filters
 * 1 retention pond with box filter
* Developing complete guidance for government and private stakeholders
Thank You

Jason Keppler
Maryland Department of Agriculture
jason.keppler@maryland.gov
410-841-5879