


#### Trees & Soils:

How much can they alter Urban Hydrology?

Susan D. Day, Ph.D., Virginia Tech



# Elements of perviousness tied to trees and soils

- Canopy intercepts and directs rainfall
- Soil surface permits water infiltration
- Soil subsurface transmits/stores water

#### Soil Characteristics and Management Affect these Elements of Perviousness

Trees & Soils: How can they alter Urban Hydrology?

#### Canopy

- Soil quality affects tree size, growth rate, and survival
- Soil surface
  - Surface cover/mulch, grade affect infiltration
- Subsurface transmission/storage
  - Tree root distribution, depth affects transmission of water along root channels
  - Soil physical characteristics determine storage and transmission potential

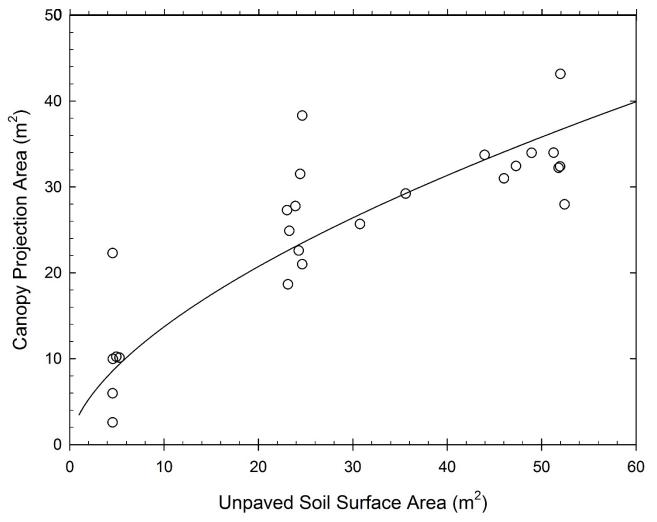






What is the uncertainty in these elements of perviousness? Canopy

Soil surface transmission


Trees & Soils: How can they alter Urban Hydrology?

Soil subsurface transmission/storage









Day & Amateis (2011) Urban Forestry & Urban Greening

Tilia tomentosa after 14 yrs...

# of trees to equal 1 acre: 112 # of trees to equal 1 hectare: 278

# of trees to equal 1 acre: 809 #of trees to equal 1 hectare: 2000



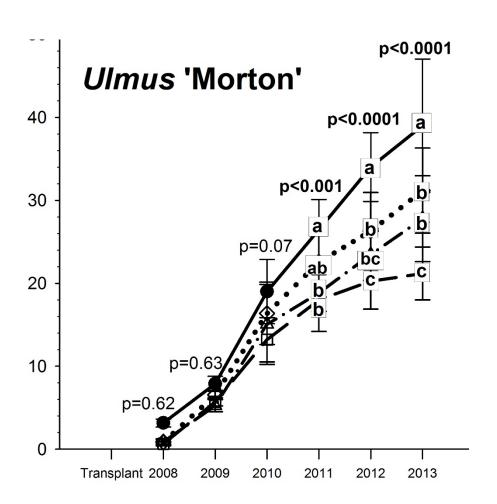


April 23, 2014

*Ulmus* 'Morton' After 6 years...

Agricultural Soil

# of trees to equal 1 acre: 130 #of trees to equal 1 hectare: 321


Simple grading, urban land use change

# of trees to equal 1 acre: 191 # of trees to equal 1 hectare: 472

Rehabilitated soil

# of trees to equal 1 acre: 104 #of trees to equal 1 hectare: 256

Layman et al. in preparation



After 6 years... divergence of growth

Layman et al. in preparation

#### **Surface Treatments**



Mitchell et al.

April23, 2014

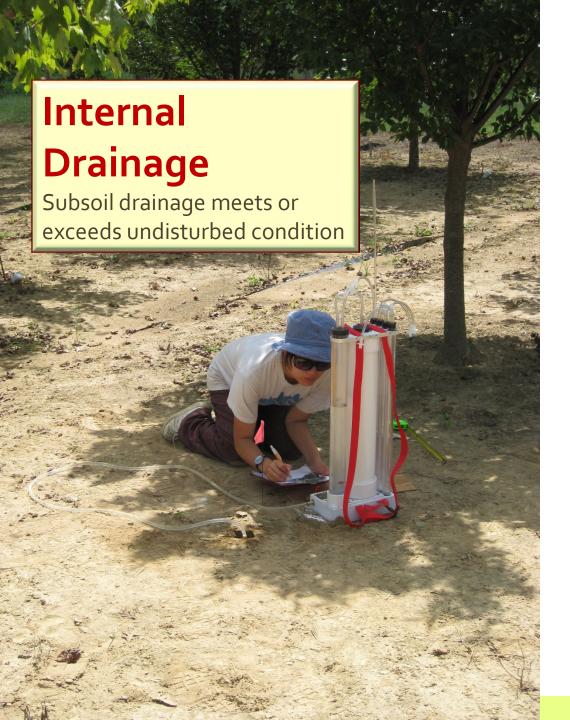
#### Surface Treatments have traditionally been thought of in terms of moisture retention and weed supression

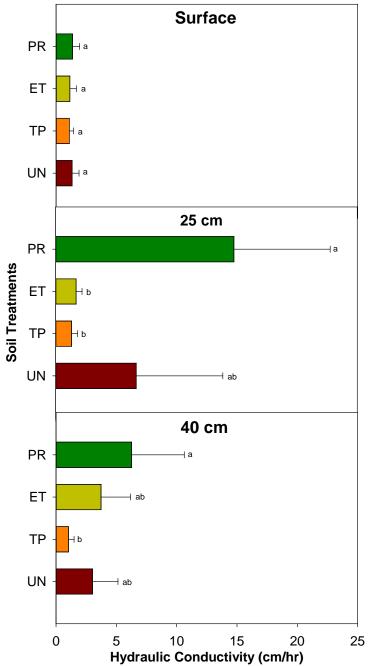




#### Preliminary Data— Rainfall intercepted/retained

Bare soil—~16 mm


Pea Gravel with Geotextile underlay—~13 mm


Hardwood Bark—~23 mm

Pine Straw—~20 mm

Caveats—variability high, data collection ongoing, varying moisture conditions

Mitchell et al.





# Site-level Effects Subsurface Permeability 10-40 cm (Ksat)

Agricultural Soil—4 to 5 cm/hr Compare to HSG B

Urban land use change

Simple grading, urban land use change—1 to 2 cm/hr Compare to HSG C or D

Rehabilitated soil—10 to 11 cm/hr Compare to HSG A or B Soil Management

Chen et al. in review

# Site-level Effects Subsurface Permeability

Roots can increase  $K_{sat}$ , but only if they penetrate soil.

Acer rubrum—from 4.7 cm/hr to 10.8 cm/hr

Quercus velutina—from 4.7 cm/hr to 14.04 cm/hr

Fraxinus pennsylvanica—from 0.17 cm/hr to 4.7 cm/hr

The lower the initial infiltration, the greater the potential increase.

Trees & Soils: How can they alter Urban Hydrology?

Bartens et al. (2008) J. Env. Qual.

#### Uncertainty in elements of perviousness tied to trees and soils

- Canopy intercepts and directs rainfall
  - Canopy size, density, morphology
- Soil surface permits water infiltration
  - Management can change HSG
- Soil subsurface transmits/stores water

Trees & Soils: How can they alter Urban Hydrology?

Greater than rainfall potential, or less

#### Uncertainty in elements of perviousness tied to trees and soils

Canopy X soil surface X subsurface

 However, these factors are linked, so magnitude of effect is likely greater rather than likely to cancel each other out



# Thank you

sdd@vt.edu

