Recommendations of the Expert Panel to Define Removal Rates from Construction Sites with Erosion and Sediment Control Practices

STAC Research Workshop, April 22, 2014

Members of ESC Expert Panel

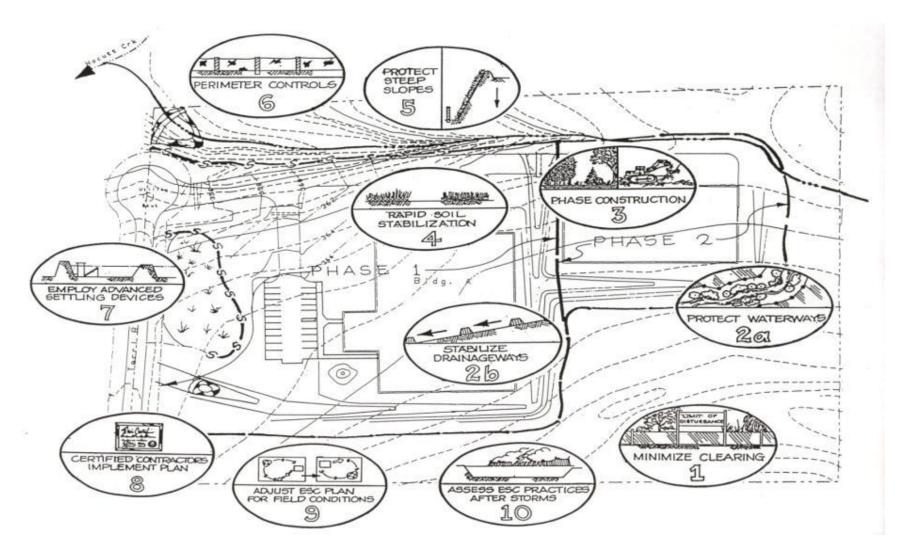
Panelist	Affiliation		
Megan Grose	West Virginia Dept of Environmental Protection		
Randy Greer	Engineer VI, Sediment and Stormwater Program, DE		
	Dept. of Natural Resources and Environmental Control		
Summer Kunkel,			
Dean Auchenbach	Pennsylvania Department of Environmental Protection		
Dr. Shirley Clark	Pennsylvania State University, Harrisburg		
Don Lake	State University of New York-College of Environmental		
	Science and Forestry		
Dr. Richard A. McLaughlin	Dept. of Soil Science. North Carolina State University		
Dr. Albert Jarrett	Professor Emeritus, Pennsylvania State University		
Bruce Young	St. Mary's Soil Conservation District (Maryland)		
Kip Mumaw	Ecosystem Services		
John McCutcheon	Virginia Department of Environmental Quality		
Dr. Neely Law	Center for Watershed Protection, Chesapeake Bay		
	Sediment Coordinator		
Tom Schueler	Chesapeake Stormwater Network, Panel Co-facilitator		
Jeremy Hanson	Chesapeake Research Consortium, Panel Co-facilitator		
	et – Chair, USWG; Cecilia Lane, CSN; Chris Mellors –		
Tetratech. Special thanks to the CBPO Modeling Team: Guido Yactayo – UMCES,			
CBPO; Gary Shenk – EPA; I	Matt Johnston – UMD, CBPO; Jeff Sweeney – EPA		

Construction In the Bay Watershed

- Highest Unit Area Sediment Load of any Bay Land Use (Edge of Field)
- About 84,500 acres of construction in any given year
- CBWM: 16% of delivered sediment load from urban sector

Construction Sites are More than Bare Ground

Construction Sites are Highly Dynamic



Construction process involves initial clearing and grading, earth-moving, installation of streets and storm drains, building construction and finally, the final stabilization of the site.

The hydrology of a construction site constantly changes, based on soil exposure, new slopes, the growing season, grass cover, addition of hard surfaces, stormwater conveyance, and the condition and performance of ESC practices.

Construction site erosion potential changes constantly over time, although significant soil loss is always expected during heavy or intense rainfall events.

Erosion and Sediment Control Practices

Level 1 ESC Practice

- Historical Level of Practice (2005 and before)
- Assumed Performance for CBWM Calibration (1990-2005)
- Less stringent sizing, technology and inspection requirements
- No Bay states currently operate at this level of practice

Level 2 ESC Practice

- Reflects more stringent ESC regulations and permits adopted in recent years
- Improved sizing, stabilization, phasing and inspection requirements
- All Bay states now safely operating at Level 2 ESC

Level 3 ESC Practice

- ESC Practice Level 2, plus additional passive chemical treatment to reduce turbidity, with a reliance on polyacrylamide (PAM) and other flocculants
- Enhanced design features on ESC practices to improve performance
- No Bay states are currently operating at this level, although several states are shifting toward it

Level 4 ESC Practice

- Best available technology for turbidity control to achieve low numerical turbidity standards
- Has been piloted at some sites in Pacific Northwest
- Involves expensive Active Treatment Systems that pump, treat and filter construction site runoff
- No Bay state is operating at this level

Monitored Construction Site Hydrology

106 storms by Line and White (2007) NC Piedmont 5						
STAGE Runoff Coefficient TSS (tons/acre)						
Construction ¹	0.50 13					
Establishment ²	0.60	2.8				
Post Construction ³	0.55	0.9				
Undeveloped 4	0.21	0.16				

¹ from initial clearing, grading, installation of infrastructure and seeding (0.7 years)

² Most homes constructed, and lawns and landscaping are becoming established (1.4 years)

³ After home build out (3.6 years)

⁴ Undeveloped reference watershed

⁵ 6 years of sampling during and after construction at a 10 acre residential subdivision, compared to an undeveloped reference forest catchment less than a mile away (also sampled for same 5.6 years)

Modeled Rv's (EPA, 2009)

Reported Volumetric Runoff Coefficient (Rv) for Construction Sites							
by Hydrologic Soil Groups (EPA, 2009)							
HSG A HSG B HSG C HSG D							
Annual Rv ¹ 0.15 0.27 0.39 0.49							
Rv for 2 year Design Storm 0.37 0.57 0.70 0.79							
¹ for the technical assumptions, see Section 9 and 10 of EPA (2009)							

Percent of each of the 4 HSG's in each Bay State ¹						
Bay State	HSG A	HSG B	HSG C	HSG D		
Delaware	21%	31%	13%	35%		
Maryland	10	39	26	25		
Pennsylvania	6	28	54	12		
New York	10	19	51	21		
Virginia	2	54	32	12		
West Virginia	7	22	54	17		
Mean of States ²	9%	32%	38%	21%		
Bay-Weighted MEAN ³	6%	38%	40%	16%		

¹State-wide from STATSGO

 $^{\rm 2}$ Value shown is simply the mean of the six Bay states, including non-Bay watershed area

³ Mean adjusted to account for fraction of total state area that is located in Bay watershed

Computed Annual Construction Rv Using the EPA			
(2009) n	nethod		
State	Annual Rv		
Delaware 0.34			
Maryland 0.34			
Pennsylvania 0.35			
New York 0.37			
Virginia 0.33			
West Virginia 0.36			
Mean of States ² 0.35			
Bay-Weighted MEAN ³ 0.35			

Sediment Loads Discharged from Construction Sites

• Review of about 25 recent and historical studies

Measured Sediment Loading Rates for Construction Sites, w/ or w/o ESC

Study	Region	Tons/acre/year	ESC	Notes
			Used?	
CBWM	Bay	24.4	No	Model
				Assumption
Yorke and Herb, 1978	MD	33	No	
Nelson, 1984	SE US	100 to 300	No	
Cleaves et al, 1970	SE US	218.9	No	
Likens and Borman, 1974	NE US	48.4	No	
Cywin and Hendricks,	SE US	134	No	
1969				
Line and White,2007	NC	13.0	Yes	Residential
Daniel et al, 1979	WI	7.8	Yes	Residential
Line, 2007	NC	18.5	Yes	Highway
Line and White, 2001	NC	4.4	Yes	Residential
Owens et al, 2000	WI	1.7-6.7	Yes	Resid./Comm.
Lee and Ziegler, 2010	KS	0.5 to 2.5	Yes	Residential

Sediment Discharged From Construction Sites

Mean TSS Inflow and Outflow Concentrations						
lin	Relationsh	ip to ESC Praction	ce Level			
	TSS IN	TSS OUT	Sediment Removal			
ESC Level	(Mg/l) (Mg/l) Efficiency					
LEVEL 1 ESC	1583	83 812 49%/50% ¹				
LEVEL 2/3 ESC	5C 6188 557 90%/83% ¹					
Grand Mean 3598						
¹ First is based on level 1 means; second is mean percent removal						
Based on 13 research studies 1990 to 2008, N=6 for Level 1 and N=7 for Level $2/3$.						

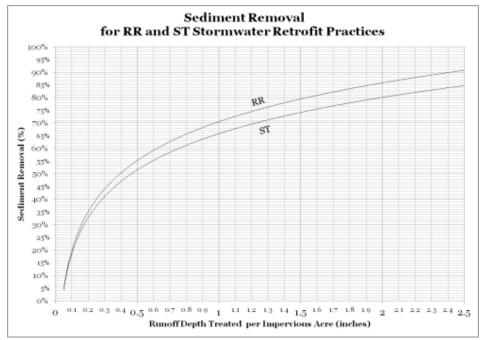
Panel Best Estimates of Base Construction Site Sediment Loads

Table 16 Comparative Summary of ESC Scenarios (tons/ac/yr)					
Worst Mid- Best Be					
ESC Scenario	Case	point	Case	Estimate	
Construction w/o ESC	22.3	8.6	5.1	12.0	
Sites Operating at Level 1	2.5	1.8	1.1	1.8	
Sites Operating at Level 2	1.6	1.0	0.7	1.1	
Sites Operating at Level 3	1.05	0.57	0.31	0.65	
Sites Operating at Level 4	ND	ND	ND	ND	
Important Note: Actual sediment loads for all 4 ESC levels	will be higher wh	en moderate and ex	treme storms ex	ceed or overwhelm	

ESC capacity, and thus create functional deficiency, and much lower removal rates. ND= No data

See Appendix A for technical assumptions for each load calculation

Defining Functional Deficiency



Accounting for Functional Deficiency

Computation of Sediment Removal Rates for Four Levels of ESC						
ESC Scenario	Discharged Load ¹	Removal Rate	MFD ² Adjustment	Effective Removal Rate ³		
Sites Operating at ESC Level 1	1.8	85%	3.1	74%		
Sites Operating at ESC Level 2	1.1	92%	1.8	85%		
Sites Operating at ESC Level 3	0.6	95%	1.3	90%		
Sites Operating at ESC Level 4	ND	ND	ND	ND		

Level 1: = 25% of time in MFD Level 2/3 = 15% of time in MFD

Summary of Key Recommendations

• Current Level 2 ESC Practices Provide a High Level of Sediment Removal From Construction Sites

ESC Scenario	Discharged Load	Effective Removal Rate
ESC Sites Operating at Level 1	3.1 t/ac/yr	74%
ESC Sites Operating at Level 2	1.75 t/ac/yr	85%
ESC Sites Operating at Level 3	1.25 t/ac/yr	90%
ESC Sites Operating at Level 4	No estimate	No estimate

• Recommended to be applied to construction site acreage in current version of CBWM (5.3.2)s

Turbidity Discharged From Construction Sites

Turbidity in relationship to ESC Practice Level, Summary of Literature						
Summary of Research	Turbidity	Turbidity	Removal	Notes		
	IN	OUT	Efficiency			
	(NTUs)	(NTUs)	%			
LEVEL 1 and a MEANO		1010				
LEVEL 1 and 2 MEANS	2327	1919	~ 25	NO PAM		
LEVEL 3 MEANS	1423	165	80-90	PAM		

Turbidity Findings

- Level 1 and 2 ESC practices have little capability to reduce turbidity
- Concern on turbidity's impact to aquatic health in streams, lakes, rivers and estuaries
- Turbidity indicates fine sediments might have a higher delivery ratio to the Bay
- Recommend shift to Level 3 ESC Practice to provide more effective turbidity control

Nutrient Dynamics At Construction Sites

Five pathways for nutrient export from construction sites:

- 1. Nutrients attached to eroded soils
- 2. Wash off of fertilizer due to hydro-seeding and permanent stabilization
- 3. Wash-off of nutrients deposited from the atmosphere
- 4. Decay of organic material used to cover soil (i.e., compost, mulches, erosion control blankets, etc)
- 5. Leaching into groundwater (primarily nitrate).

Bi-Modal N/P Concentrations in Construction Site Runoff

Comparison of nutrient concentrations in construction site runoff (mg/l)						
Study	TN	DIN	ТР	Notes		
Kayhanina et al 2001	3.5	1.06	0.95	California, N=72		
				Highway		
Line, 2007	1.7		0.47	NC, N=16		
Cleveland and Fashokun, 2006		1.26	0.47 as PO_4	Above basin		
Cleveland and Fashokun, 2006		1.57	0.21 as PO_4	Below basin		
Kalanaisan et al 2008			0.72 as Po_4	Below basin		
Soupir et al 2004	57.5	15.96	5.6	Fertilized test plot		
Faucette et al 2008	Nd	Nd	31.8	Fertilized test plot		
McLaughlin and King, 2008	5.18	Nd	3.1	JACK		
McLaughlin and King, 2008	19.8		34.6	BUNC		
McLaughlin and King, 2008	3.78		0.3	WAKE		
Horner et al, 1990			In: 12.3/2.25 /0.55	3 basins in Seattle		
			Out: 0.44/0.6/0.14			

Exposed Construction Site Soils Have Low Sediment Nutrient Content

Organic materials

Topsoil

B Subsoil

R Solid rock

Nutrient Content by Soil Horizon in USDA Soil Survey						
	Silt Loam Loamy Sand					
Organic Content	O Horizon: 5.5%	O Horizon: 9.5%				
	AB Horizon: 1.8%	AB Horizon: 1.4%				
Total Nitrogen	O Horizon: 2,900	O Horizon: 4,700				
(mg/kg)	AB Horizon: 1,000	AB Horizon: 700				
Total Phosphorus	O Horizon: 35	O Horizon: 16				
(mg/kg)	AB Horizon: 5	AB Horizon: 2				

Weathered or decomposed rock

Typical Fertilization Rates at Construction Sites in Bay States to Achieve Vegetative Stabilization

ESC Stabilization Recommendations	Formulation (N-P-K)	Application Rate lbs/ac	N Rate N lbs/ac	P Rate * P lbs/ac			
Temporary Stabilization	10-10-10	500-600	50	27			
Permanent Stabilization	10-20-10	500-1000	65	48			
Total Fertilizer Application		600 to 1500	115	75			
See Table 24 for variation among Bay States. * Adjusted to convert phosphate PO ₄ to TP Suggested application rate in the absence of a soil test or urban nutrient management plan. May be replaced by mulching in the non-growing, season							

replaced by mulching in the non-growing season.

• 3 to 4 week "hi risk window" for grass to germinate and achieve desired density, as well as 1 to 3 years "moderate risk window" for starter lawns

• Construction sites have 7 or more of the 12 fertilizer wash-off hi risk factors as defined by UNM Expert Panel

Risk of Fertilizer Wash-off

Mass Balance Comparison of all 5 Nutrient Export Pathways

Comparison of Nutrient Loadings by all Five Pathways (low, medium or high)							
(lbs/ac/yr)							
	l 1	Total Nitrog	gen	Total Phosphorus			
	Low	Low Med High Low Med Hig					
Pathway 1	2.8	11.2	16.8	0.08	0.30	0.46	
Pathway 2	1.1	5.7	11.4	0.7	3.7	7.4	
Pathway 3	1.3	3.9	6.5	0.07	0.2	0.4	
Pathway 4	0.7 2.8 4.2 0.2 0.8 1.2					1.2	
Total	5.9	23.6	38.9	1.1	5.0	9.5	
CBWM 26.4 8.8							
<i>Note:</i> Pathway 5 "N migration to groundwater" was not included in the analysis,							
so N load mass balance may be conservative.							

Nutrient Recommendations

- Existing CBWM construction site nutrient loading rates confirmed by mass balance analysis
- No clear evidence that ESC practices can actually reduce nutrients
- Some evidence that they may actually be nutrient sources.
- Zero nutrient removal efficiency for all four levels of ESC practice
- Recommend critical monitoring studies to reduce the risk of fertilizer wash-off.

Future Research and Mgmt Needs

- The Panel urges funding for a short-term, intensive monitoring study
- Focus on sampling nutrient concentrations in construction site discharges during the period of high fertilizer wash-off risk that occurs during and after site stabilization.
- Scope may involve a total of 100 200 flow-weighted composite samples to measure nutrient concentrations in 10 to 15 different construction sites in the Bay region to get more accurate EMC estimates for N and P.

Longer Term Study

- Investigate whether fertilization rate/formulation recommendations, vegetative stabilization methods and/or down-gradient ESC practices could be modified in order to reduce nutrient export.....while still maintaining effective vegetative and soil cover during the entire construction process.
- Potential benefits of incorporating low doses of PAM to hydro-seeding mixes on erosion-prone soils should be sampled

Panel Modeling Recommendations

- In next version, either drop the sediment target load for the no-ESC condition to 12 tons/ac/yr, or shift to explicitly simulating construction sites as its own land use, based appropriate target load for the prevailing ESC level
- Incorporate all important nutrient export pathways (especially fertilizer application) in the model simulation of construction sites
- Consider lower sediment loads for low slope coastal plain terrain

WQGIT Decision on Phasing of Recommendations

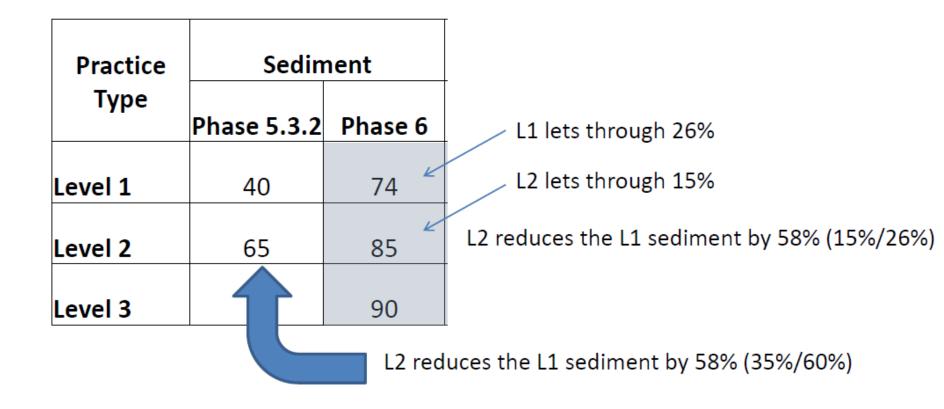
Practice	Sediment		Nitrogen		Phosphorus	
Туре	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6
Level 1		74		0		0
Level 2		85		0		0
Level 3		90		0		0

1. Honor the panel recommendations as the accumulation of the best science

Relating Recs to Calibration

Practice Sediment Type Phase 5.3.2 Phase		nent	Nitro	gen	Phosphorus	
		Phase 6	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6
Level 1	40	74	25	0	40	0
Level 2		85		0		0
Level 3		90		0		0

2. Ensure that we are modeling in a way that best measures real changes on the ground


Relating Recs to Each Other

2. Ensure that we are modeling in a way that best measures real changes on the ground

Practice	Sediment		
Туре	Phase 5.3.2	Phase 6	L1 lets through 26%
Level 1	40	74	L2 lets through 15%
Level 2		85	L2 reduces the L1 sediment by 58% (15%/26%)
Level 3		90	

Relating Recs to Each Other

2. Ensure that we are modeling in a way that best measures real changes on the ground

Tying it All Together

Practice	Sediment		Nitrogen		Phosphorus	
Type Phase 5.3.2 P		Phase 6	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6
Level 1	40	74 *	25	0 **	40	0**
Level 2	65	85 *	25	0 **	40	0**
Level 3	77	90 *	25	0 **	40	0**

* The ultimate Phase 6 sediment loading rates will be selected by the Modeling Workgroup and will be subject to Water Quality GIT Approval.

** The Expert Panel proposed that the zero removal rate will be applied to the current target nutrient loading rates for construction land in Phase 6 of the CBWM, unless new monitoring data acquired between now and then provides evidence that the target nutrient loads from construction sites with Level 2 or Level 3 ESC practices should be increased or decreased. The ultimate Phase 6 target nutrient loading rates will be selected by the Modeling Workgroup and will be subject to Water Quality GIT Approval