#### Balancing Nutrient Limits with Net Environmental Benefits

#### JB Neethling HDR Engineering

"Real World Wastewater Technologies Workshop" CBP's Scientific & Technical Advisory Committee (STAC) Richmond, VA May 16, 2012



Copyright 2012 HDR Engineering Inc. All rights reserved.



#### Outline

- How reliable does good operating plants perform?
- What are the costs/features/break points of nutrient removal?
- What are the benefit/impact of nutrient removal limits?



## How well does good operating plants perform?



## What is the Best "Performance" for This Real-World WWTP Dataset?





#### Define Performance on a Statistical Basis



**WERF** 

#### Three TPSs shown

- TPS-14d (3.84%)
  - Ideal Performance
  - 14-day performance level
- TPS-50%
  - Median Performance
  - "Average" performance
- TPS-95%
  - Reliable Technology Achievable Performance



## 14-day Values Can Vary – Using Rolling Average





#### Nitrogen Process Types

#### Separate Stage

- Separate processes for nitrification, dentrification
- MeOH added
- Filter (denitrification)
- Combined
  - Conventional, multiple cell BNR (MLE, Bardenpho, step feed, etc.
  - Effluent filter (no MeOH)
- Multiple Stage
  - Conventional plus denitrification filter



#### Results: Total Nitrogen – by Process



#### Phosphorus Process Types

- 1B = Biological Phosphorus Removal with filter polishing
- 1C = Single Chemical Phosphorus Removal with filter polishing
- 2B = Multistage Biological with Chemical polishing
- 2C = Multistage Chemical with Chemical polishing



### Results: Total Phosphorus – by

Process



#### Summary

- Technology performance statistics allow for rational approach to data analysis and technology assessment
- Data from well operated nutrient removal plants demonstrated the variability in performance
  - Nitrogen removal plants shows:
    - Best performance 50-60% of median
    - Reliable performance 180-250% of median
  - Phosphorus removal plants shows:
    - Best performance 40-50% of median
    - Reliable performance 200-300% of median



### **Permit Period and Reliability**

| Period    | Basis<br>(days) | Sample | Permit<br>Percentile<br>(%) | Reliable<br>Percentile<br>(%) | 5 yr<br>Excee-<br>dance |
|-----------|-----------------|--------|-----------------------------|-------------------------------|-------------------------|
| Max Day   | 1               | 365    | 99.7                        | 99.9                          | 1.8                     |
| Max Week  | 7               | 365    | 98.1                        | 99                            | 2.6                     |
| Max Month | 30              | 365    | 91.8                        | 95                            | 3                       |
| Ann Avg   | 182.5           | 365    | 50                          | 90                            | 0.5                     |



### **Permit Period and Reliability**

| Period    | Basis<br>(days) | Sample | Permit<br>Percentile<br>(%) | Reliable<br>Percentile<br>(%) | 5 yr<br>Excee-<br>dance |
|-----------|-----------------|--------|-----------------------------|-------------------------------|-------------------------|
| Max Day   | 1               | 365    | 99.7                        | 99.9                          | 1.8                     |
| Max Week  | 7               | 365    | 98.1                        | 99                            | 2.6                     |
| Max Month | 30              | 365    | 91.8                        | 95                            | 3                       |
| Ann Avg   | 182.5           | 365    | 50                          | 90                            | 0.5                     |
|           |                 |        |                             |                               |                         |

Exceed once Acceptable Risk?

**WERF** 

#### Reliability at the Permit Limit - TP

| Plant             | Process | Permit | %     | Exceed<br>#Mo/5yr | Exceed<br>#yr/5yr | Period     |
|-------------------|---------|--------|-------|-------------------|-------------------|------------|
| Breckenridge      | 2B      | 0.05   | 95.7% | 2.6               | 0.2               | М          |
| Pinery            | 2B      | 0.05   | 92.8% | 4.3               | 0.4               | М          |
| Rock Creek        | 2B      | 0.10   | 72.3% | 16.6              | 1.4               | M<br>(50%) |
| Cauley Creek      | 1B      | 0.13   | 85.7% | 8.6               | 0.7               | М          |
| Gwinnett Co       | 2B      | 0.13   | 96.8% | 1.9               | 0.2               | М          |
| CCWRD-AWT         | 2B      | 0.14   | 81.7% | 11.0              | 0.9               | М          |
| CCWRD-<br>Central | 2B      | 0.14   | 81.7% | 11.0              | 0.9               | М          |
| Kalispell         | 1B      | 0.15   | 76.5% | 14.1              | 1.2               | М          |
| ASA               | 2C      | 0.18   | 98.5% | 0.9               | 0.1               | М          |
| DCWASA            | 1C      | 0.18   | 93.5% | 3.9               | 0.3               | A          |
| Piscataway        | 1C      | 0.18   | 84.4% | 9.4               | 0.8               | Μ          |



#### Reliability at the Permit Limit - TN

| Plant                     | Process | Permit | %     | Exceed<br>#Mo/5yr | Exceed<br>#yr/5yr | Period |
|---------------------------|---------|--------|-------|-------------------|-------------------|--------|
| TMWRF ('09)               | SepSt   | 2      | 67.7% | 19.4              | 1.6               | M&A    |
| Western<br>Branch         | SepSt   | 3      | 90.3% | 5.8               | 0.5               | М      |
| Fiesta Village            | Mult    | 3      | 96.8% | 1.9               | 0.2               | M&A    |
| River Oaks                | SepSt   | 3      | 94.6% | 3.2               | 0.3               | А      |
| Eastern EWRF<br>Orange Co | Comb    | 3      | 34.6% | 39.2              | 3.3               | А      |
| Iron Bridge               | Comb    | 3.08   | 91.9% | 4.9               | 0.4               |        |
| Scituate                  | SepSt   | 4      | 87.9% | 7.3               | 0.6               | Μ      |
| WSSC -<br>Parkway         | Comb    | 7      | 96.8% | 1.9               | 0.2               | М      |
| Piscataway                | Comb    | 8      | 95.8% | 2.5               | 0.2               | Μ      |



## What is controlling nutrient removal technologies

- What are the nutrient species?
- How well can it be removed?
- What is the removal efficiencies of individual species?
  - Ideal
  - 80<sup>th</sup> Percentile (1 exceedence/5 yr annual limit)
  - 95<sup>th</sup> Precentile (3 exceedences/5 yr monthly limit)



#### 80<sup>th</sup> and 95<sup>th</sup> Percentile Nitrogen Species in Advanced Treatment



NH4-N = Ammonia; NOx = Nitrite + Nitrate; DON = Dissolved Organic Nitrogen; Part N = Particulate N



#### 80<sup>th</sup> and 95<sup>th</sup> Percentile Phosphorus Species in Advanced Treatment



SRP=Soluble Reactive P; PP=Particulate P SNRP = Soluble Nonreactive P TP = Total P

#### Can you beat the statistics?



- At a price...
- Additional facilities
- Increase chemical usage/dose
- Increased solids management cost
- Improved monitoring
- Improved source control aka reduce influent variability
- BUT...

## THERE IS A LIMIT, WERF

#### Environmental Impacts and Benefits



### **Treatment Level Objectives**

| Level | BOD<br>(mg/L) | TSS<br>(mg/L) | TN<br>(mg N/L) | TP<br>(mg P/L) |
|-------|---------------|---------------|----------------|----------------|
| 1     | 30            | 30            | -              | -              |
| 2     | <30           | <30           | 8              | 1              |
| 3     | <30           | <30           | 4-8            | 0.1-0.3        |
| 4     | <30           | <30           | 3              | 0.1            |
| 5     | <30           | <30           | 2              | <0.02          |
|       |               |               |                | <b>N</b> WER   |

#### **Treatment Unit Processes**

| Level | Primary | Ferm.    | Act Sludge<br>Relative<br>Footprint | High<br>Rate<br>Clar. | Filter | MF /<br>RO | Return-<br>Stream<br>Treatment | Metal<br>Salt<br>(Chem.) | Methanol<br>(Chem.) |
|-------|---------|----------|-------------------------------------|-----------------------|--------|------------|--------------------------------|--------------------------|---------------------|
| 1     | ~       |          | 1X                                  |                       |        |            |                                |                          |                     |
| 2     | ~       |          | 2X                                  |                       |        |            |                                | Optional                 | Optional            |
| 3     | ~       |          | 2-2.5X                              |                       | >      |            |                                |                          | >                   |
| 4     | ~       | <b>/</b> | 2-2.5X                              | ~                     | Denit. |            | ~                              | ~                        | ~                   |
| 5     | ~       |          | 2-2.5X                              | ~                     | Denit. | ✔ a        |                                | ~                        |                     |



#### Tradeoff Between Nutrient Removal and Sustainability

Determine sustainability impacts of five levels of treatment for 10 mgd plant

Determine if there is a point of diminishing returns for sustainability with increased treatment



# What Did We Consider for the Triple Bottom Line?

#### **Economic Pillar:**

Total Project Cost

•O&M Cost

Social Pillar: •Discussion in WERF Report •Existing metrics (Health) •Future metrics (Social)

#### **Environmental Pillar:**

•GHGs (Energy Demand, Chem manufacturing/hauling, N<sub>2</sub>O, biosolids hauling)

Water Quality

Ancillary Benefits of Increased
Treatment



#### System Inputs



### GHG Distribution (10 mgd Plant)

#### CO<sub>2</sub> eq mt/yr



#### Incremental GHG ↑ per Additional Ib N or P Removed



Incremental GHG Increase per Change in Treatment Level for N
Incremental GHG Increase per Change in Treatment Level for P

#### Incremental GHG ↑ per Additional Ib N or P Removed



Incremental GHG Increase per Change in Treatment Level for N
Incremental GHG Increase per Change in Treatment Level for P

#### **Algal Production - GHG Production**



#### Water Environment Research Foundation (WERF) "Striking the Balance Between <u>Wastewater Treatment Nutrient Removal and Sustainability</u>" November 2011

- 1. Secondary Treatment (No nutrient removal)
- 2. Biological Nutrient Removal (BNR) TP 1 mg/L TN 8 mg/L
- 3. Enhanced Nutrient Removal (ENR) TP 0.1-0.3 mg/L TN 4-8 mg/L
- 4. Limit of Treatment Technology (LOT) TP <0.1 mg/L TN 3 mg/L
- 5. Reverse Osmosis (RO) TP <0.02 mg/L TN 2 mg/L



#### What's It Going to Cost You for a 10 mgd Plant?

| Treatment Level                | Total Project<br>Costs<br>(\$ Million) <sup>i</sup> | Operations<br>Cost<br>(\$/MG) <sup>ii</sup> | Total Present<br>Worth<br>(\$ Million) <sup>iii</sup> |
|--------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------------------------------|
| 1 (No N/P Removal)             | 93                                                  | 250                                         | 110                                                   |
| 2 (8 mg N/L; 1 mg P/L)         | 127                                                 | 350                                         | 150                                                   |
| 3 (4-8 mg N/L; 0.1-0.3 mg P/L) | 144                                                 | 640                                         | 180                                                   |
| 4 (3 mg N/L N; <0.1 mg P/L)    | 153                                                 | 880                                         | 210                                                   |
| 5 (2 mg N/L N; <0.02 mg P/L)   | 218                                                 | 1,370                                       | 300                                                   |

*i* The total project capital cost are the equipment cost, construction, and "soft costs"

*ii* Operations cost = energy and chemical cost. Labor and maintenance costs are excluded

*lii* The assumed discount rate was 5 percent at an escalation rate of 3.5 percent (capital, energy, non-energy)

#### Summary/Conclusion



#### Summary and Conclusion - I

- Even well operating plants shows significant variation in performance
  - The average performance is about 2 times the ideal
- The reliability of meeting a permit requirement depends on:
  - Averaging period
  - Factor of safety to meet permit Owner risk tolerance
- Restrictive limits (lower and/or short periods) increases the need for redundant units, multiple barriers to meet permits reliably



#### Summary and Conclusion - II

- Efficiency solids separation becomes critical for phosphorus removal
- Chemical addition provides a tool to improve reliability
- Chemical usage increase for restrictive limits
- Ionic species removal drastically increase the treatment costs and impacts
- The benefit per mass N or P diminish exponentially as the permits become more restrictive



#### Balancing Nutrient Limits with Net Environmental Benefits

#### JB Neethling HDR Engineering

"Real World Wastewater Technologies Workshop" CBP's Scientific & Technical Advisory Committee (STAC) Richmond, VA May 16, 2012



Copyright 2012 HDR Engineering Inc. All rights reserved.

