DEVELOPMENT OF ALGAE-BASED NITROGEN REMOVAL TECHNOLOGIES

K. C. Filippino and M. R. Mulholland Old Dominion University

Outline of talk

- Phycoremediation
 - pros and cons, state of technology, potential solutions
- Approach & Experimental design
- Results
- Conclusions
- Future Work

Current technologies for low TN in WWTP effluent commonly involve biological nutrient removal (BNR) using bacteria

(Jeyanayagam 2005)

Algae-based Nitrogen Removal

- Phycoremediation the use of algae to remove or reduce nutrients
- Potential replacement for BNR or post-BNR polishing
- Certain sectors have already capitalized on the ability of algae to take up a diverse suite of N:
 - Aquaculture, agriculture, livestock, and small community wastewater facilities
 - There are many bioreactor designs that achieve nutrient removal using algae

Phycoremediation - Pros

- N rapidly converted to biomass that can be removed and used
- No need for supplemental carbon (C) additions (e.g. methanol) – need to control pH/aerate
- Algae also remove phosphorus (P) during their growth – could reduce P removal costs
- No gaseous N intermediates (e.g., N₂O)
- Inexpensive, simple, and environmentally friendly

 $106 \text{ CO}_2 + 16 \text{ HNO}_3 + \text{H}_3\text{PO}_4 + 78 \text{ H}_2\text{O}_4 + 78 \text{ H}_2\text{O}_4\text$

Phycoremediation - Cons

Requires light

- Separation of algae from treated wastewater stream
- Continuous flow chemostat reactors
 - Short in-plant hydraulic residence times (HRTs) and high flow rates – need fast-growing algae!
 - Balance conversion of N to biomass and wash out

Space – large surface area required to provide access to "free" light

- Requires large footprint
- Existing WWTP reactors use less space

Current state of technology

- Phycoremediation technologies using algae have been developed, primarily outside of the US or where space is not limiting
- While various phycoremediation techniques have been described, none have been designed for use in large WWTP applications (>1-3 MGD) for plants with short HRTs (< 4-8 hours)

 Algal nutrient removal has focused on dissolved inorganic P (DIP) as PO₄³⁻ and N primarily as ammonium (NH₄⁺)

Potential solutions

- Separation problem Immobilize algae so they can be easily removed
 - Natural polymers sodium alginate
 - Embed or apply as a biofilm
- Light problem Increase light penetration
 - Submerged light sources
 - Side-emitting fiber optics
 - Solar/light collectors
 - Wavelength specific light sources

Our approach

Algal Selection

- Mixed algal suspension from WWTP
- Chlorella spp.
- Desmodesmus spp.

Algal Immobilization

- Embed as beads, strands, or layers in sodium alginate
- Attach to biofilm carriers

Nutrient Removal

- Polishing step for final effluent from wastewater treatment process
- N removal: NO3⁻, NH4⁺, DON
- Evaluate P requirements for algae and P removal

Optimization

- Temperature 15, 20, 25, 30°C
- Light supply surface, surround, side-emitting fiber optics
- Mixing/aeration
- CO₂ concentrations

• Biological endpoints – Chl *a*, fluorescence, cell counts, productivity

• Nutrient concentrations – TDN, NOx-N, NH₄⁺, DON,

PO₄³⁻

Measurements

Our approach

25-2

400

300

- Algal
- Mixed algal s
- Chlorella spp
- Desmodesm

Algal I

- Embed as be alginate
 Attach to biot
 - Nutrie

- Polishing ste treatment pro
 N removal: N
- Evaluate P re

Opt

- Temperature
 Light supply
- fiber optics

 Mixing/aeratic
- CO₂ concentr

ological – Chlorophyll *a*, rescence, cell counts, ductivity utrient concentrations – N, NOx-N, NH₄⁺, DON,

leasurements

Experimental Design

- 1. Free-floating algal growth in effluent amended with P
- Small-scale (<1L) encapsulation (alginate beads) in batch mode, light penetration from all sides
 - a) Altered aeration/mixing
 - b) Altered temperature
- 3. Larger scale (5L) encapsulation
 - a) Batch vs continuous flow
 - b) pH effects
 - c) Varied light source

Experimental constants

- All experiments start with HRSD's Virginia Initiative Plant treated effluent (fully nitrifying/partially denitrifying)
 - $NH_4^+ < 1 mg/L$
 - NOx-N = 5 -7 mg/L
 - OP < 0.1 0.3 mg/L
 - TP < 0.5 mg/L
- All experiments conducted using 24 h light
- P always added as 16 N:1 P (algal molar N:P requirement)
- All bioreactors either mixed or aerated
- Growth rates calculated as doubling times

Results - Free algae

Algae like to grow in wastewater

Desmodesmus sp. and Chlorella v. – common freshwater algae, grow well in effluent

Algal Immobilization embedding

Sodium alginate

 Simple and cost-effective natural polymers, derived from algae, form rigid beads when dropped into an ionic solution.

 When mixed with suspended algae, beads encapsulate algae that can grow within the polymer, allowing nutrients from effluent to diffuse into the beads

Results – encapsulated algae Algae like to grow in wastewater while encapsulated

Chlorella v. doubling time greater in aerated bioreactor

Chlorella v. doubling times similar in different temperature bioreactors

Results – Nutrient reduction

Algae can remove N and P

Exp. #	Type of algae/ free or embedded	Batch or flow through	Doubling time (d)	NOx-N removal efficiency	P removal efficiency
1	Desmodesmus/free	Batch	5.1 ± 0.6	N/A	N/A
2	Desmodesmus/free	FT ¹ (0.2 mL/min)	0	20%	N/A
3	Desmodesmus/free	Batch	4.9 ± 0.5	<40%	N/A
4	Synechococcus/free	Batch	0	N/A	N/A
5	Chlorella/free	Batch	2.5 ± 0.4	N/A	N/A
6	Chlorella/embedded	Batch	4.7 ± 0.3	N/A	N/A
7	Chlorella/embedded	Batch	4.0 ± 0.5	N/A	N/A
8	Chlorella/embedded	Batch	1.6 ± 0.1	100% in 4d	90% in 4d
9	Chlorella/embedded	Batch	4.0 ± 0.5	100% in 6d	90% in 12d

Results – large- scale encapsulated algae

Doubling time: 3.8 ± 0.5 d

100% NOx-N reduction in 4 days

* 30° C bioreactor, overhead fluorescent light

Results – Increased light

Doubling time: 2.2 ± 0.8 d

100% NOx-N reduction in 2 days

* 30° C bioreactor, increased light by 23%

Results – Controlled pH

Prevent C limitation

Doubling time : 1.4 ± 0.3 d

100% NOx-N reduction in 1 day

* 30° C bioreactor, increased light by 23%, pH = 7-7.5

Results – Flow through system 5L bioreactors (3.6L effluent), stirred, 30°C, 23% increased light, 5 mL/min (12 h HRT)

Doubling time : 1.8 ± 0.4 d DT > HRT <100% NOx-N reduction in 3 days Results – Flow through system
 5L bioreactors, stirred, 30°C, 23% increased light, 5 mL/min (12 h HRT), submersible wavelength specific LEDs (623 nm)

Doubling time : 0.89 ± 0.04 d DT > HRT

Only 50% NOx-N reduction in 3 days

Results – Flow through system 5L bioreactors, stirred, 30°C, 23% increased light, 5 mL/min (12 h HRT), submersible wavelength specific LEDs (red; 623 nm), pH maintained (7-7.5)

Doubling time : 0.48 ± 0.01 d Now about equal to HRT! 100% NOx-N reduction in 1 day (2/3 replicates)

Results – Flow through system

 5L bioreactors, stirred, 30°C, 23% increased light, 8.5 mL/min (6.5 h HRT), submersible wavelength specific LEDs (red; 623 nm), pH maintained (7-7.5)

Doubling time : 0.72 ± 0.01 d

100% NOx-N reduction in 1 day

Results – Flow through system

5L bioreactors, stirred, 20°C, 23% increased light, 8.5 mL/min (6.5 h HRT), submersible wavelength specific LEDs (red; 623 nm), pH maintained (7-7.5)

NOx-N produced but VIP effluent was uncharacteristically dominated by NH₄⁺ which was depleted to 0 within 24 h

Doubling time : 0.52 ± 0.08 d

 Results – Flow through system
 5L bioreactors, stirred, 20°C, 23% increased light, 8.5 mL/min (6.5 h HRT), submersible wavelength specific LEDs (red; 623 nm), pH maintained (7-7.5), bead/effluent = 10% (v/v)

Doubling time : 0.68 ± 0.26 d

80% NOx-N reduction in 1 day

 Results – Flow through system
 5L bioreactors, stirred, 20°C, 23% increased light, 5 mL/min (12 h HRT), submersible wavelength specific LEDs (red; 623 nm), pH maintained (7-7.5), coated biofilm carriers

100% NOx-N reduction in 28 h

80 – 90% TDN reduction in 28 h

Results – Summary

Exp. #	Type of algae/ free or embedded	Batch or flow through	Light type	Temp. (°C)	pH regulated	Doubling time (d)	NOx-N removal efficiency	P removal efficiency
10	Chlorella/embedded	Batch + P	Fluor. 24h	25	N/A	3.8 ± 0.5	100% in 4d	70% in 8d
11	Chlorella/embedded	Batch + P	Fluor. 24h +23%	25	N/A	2.2 ± 0.8	100% in 2d	100% in 2d
12	Chlorella/embedded	Batch + P	Fluor. 24h +23%	25	7 – 7.5	1.4 ± 0.3	100% in 1d	100% in 1d
13	Chlorella/embedded	FT (5 mL/min) + P	Fluor. 24h +23%	30	N/A	1.8 ± 0.4	100% in 2d	100% in 2d
14	Chlorella/embedded	FT (5 mL/min) + P	Fluor. 24h + red LEDs	30	N/A	0.89 ± 0.4	50% in 1d	90% in 1d
15	Chlorella /embedded	FT (5 mL/min) + P	Fluor. 24h + red LEDs	30	7 – 7.5	0.48 ± 0.4	100% in 1d	100% in 1d
16	Chlorella /embedded	FT (8.5 mL/min) + P	Fluor. 24h + red LEDs	30	7 – 7.5	0.472±0.01	100% in 1d	100% in 1d
17	Chlorella /embedded	FT (8.5 mL/min) - P	Fluor. 24h + red LEDs	30	7 – 7.5	1.25 ± 0.25	100% in 1d	N/A
18	Chlorella /embedded	FT (8.5 mL/min) - P	Fluor. 24h + red LEDs	20	7 – 7.5	0.52 ± 0.08	0	N/A
19	Chlorella /embedded (re-used)	FT (8.5 mL/min) - P	Fluor. 24h + red LEDs	20	7 – 7.5	1.3 ± 0.1	30-50% in 1d	N/A
20	Chlorella /embedded (10% v/v)	FT (8.5 mL/min) - P	Fluor. 24h + red LEDs	20	7 – 7.5	0.68 ± 0.26	80% in 1d	N/A
21	Chlorella /embedded (10% v/v)	FT (8.5 mL/min) - P	Fluor. 24h + blue LEDs	20	7 – 7.5	1.9 ± 0.9	30% in 2d	N/A
22	Chlorella /embedded (10% v/v; re-used)	FT (8.5 mL/min) - P	Fluor. 24h + blue LEDs	20	7 – 7.5	0.77 ± 0.13	30% in 2d	N/A
23	Chlorella /embedded (plastic carriers)	FT (5 mL/min) + P	Fluor. 24h + red LEDs	30	7 – 7.5	N/A	100% in 1.2d	0

Conclusions

Phycoremediation strategies - successful at HRTs of 6.5 and 12 h

- 10% bead to effluent (v/v) efficient at N removal, reduce more?
- Coated biofilm carriers proved promising

Conclusions

- Effluent 'type' will effect results, NH₄⁺ preferentially removed over NOx and organics
- Significant NOx-N removal was obtained, steady state within 24 h
- Wavelength specific submersible LEDs increase growth rates, red > blue
- Maintaining pH increases growth rates and N and P removal efficiencies because it alleviates C limitation of photosynthesis, could be a good use of plant CO₂

Reality check = Costs

Lights and alginate are greatest expense

- Costs ~\$0.03/m to use submersible red LEDs for 1 day - Need to scale down amount of lights used per L effluent
- Need to find cheaper source for large-scale alginate purchases, beads can be used for ~ 2 weeks and still maintain integrity and efficiency
- Other chemical costs may be offset by recycling CO₂ and not removing PO₄³⁻

Future work

- Decrease HRTs further
- Scale up
- Perform experiments in a series
- ID robust algal communities for plant setting
- Determine optimal N:P ratios
- More work into biofilm carriers like that used for bacteria in moving bed biofilm reactors (MBBR)
- Potential for algal and polymer recycle streams (However, algal beads dry rapidly)

Questions?

 Acknowledgements – Mulholland lab group especially Chris Schweitzer, WERF, HRSD