Microbial Nitrogen Transformations

Kartik Chandran

Columbia University

Real World Wastewater Technologies Workshop May 16th, 2012

Engineering the N-cycle

- Several intermediates reactive
 NO₂-N, NO, NH₂OH
 - Control expression of pathways
- AOA not even included
- e- donor based interactions not included
- How to resolve activities?
- How to resolve contribution to mass balances?

Engineered BNR systems are typified by multiple activities in concert or competition

Some commonly studied pathways

Yu et al., ES&T 2010, 44(4), 1313-1319

Costa et al., Trends in Microbiology 2006, 14, 213-219

Nitrification

Conceptual system in AOB

- Concomitant oxidation of CH₄ and CO₂ fixation
 - Digester gas contains CO₂
 - Foulant for chemical catalyst; but a food source for AOB
 - Moisture- not really an issue
- Prospect of combining C &N cycles

Biological production of methanol

- Difficult to chemically break the C-H bonds
- (Some) bacteria do this all the time

• Ideally, partial oxidation of CH₄ is desired

Exploring the prospect of selective oxidation of CH₄ to CH₃OH

- Ammonia oxidizing bacteria (AOB) mostly oxidize methane to methanol
- They lack the metabolic pathways to produce CO₂

Results

Taher & Chandran, unpublished results

Ammonia oxidation by archaea

Courtesy Prof. M.G. Klotz, UNCC

Denitrification

• Can be driven by organics, (CH₄), S

- Do same bacteria utilize all organic C- sources?
- What happens to community structure upon changing organic C-source?
- Implications for process modeling, design and optimization?

Organic carbon uptake during denitrification

Organic carbon uptake during denitrification

Tracking dominant methylotrophic populations in the SBR

Phase I

- Methyloversatilis spp. more abundant than Hyphomicrobium spp.
- 'Relatively' stable during methanol feed phase

Tracking dominant methylotrophic populations in the SBR

Survival of methylotrophic populations depended upon their nutritional modes

Tracking dominant methylotrophic populations in the SBR

Phase I

Phase II

Survival of methylotrophic populations depended upon their nutritional modes

Nitrite based anaerobic methane oxidation by C. Methylomirabilis oxyfera

Anaerobic ammonia oxidation

Conventional BNR vs ANAMMOX

Conventional BNR

ANAMMOX

Only two pilot-scale applications of ANAMMOX in the U.S. ever

Two bioreactor configurations

	Granular anammox	Biofilm CANON
Configuration	20 L SBR	4L Chemostat, 37.5% Kaldnes K1 media
Operating conditions	HRT = 4d, SRT = 30d, completely anaerobic	HRT = 0.5d, Intermittent aeration (0.5min on/1min off)
Seed	NYC anammox pilot plant + Strass, AT	Local activated sludge (Red Hook)
Influent	490 \pm 194 mg NH ₄ ⁺ -N/L, 518 \pm 222mg NO ₂ ⁻ -N/L	$615 \pm 164 \text{ mg NH}_4^+-N/L$
N-Removal	$0.2 \text{ kg N/m}^3/d$, 86~91%	$0.6 \sim 1.3 \text{ kg N/m}^3/d$, 55~88%

N removal performance in granular anammox

Park et al., 2010, ES&T

- Stable operation accomplished for > 200 days with 88 ± 3 % removal efficiency
 Some transient upsets
- *Reactor performance gives little information on ecology and community abundance*

AMX are not alone in anammox reactors

- Stable performance of anammox reflected in microbial ecology
 Co-existence of AOB, NOB and AMX
- Abundance gives little direct information on activity

Implications of activity on design

- Traditional batch tests not applicable to estimate μ_{max}
 - AOB, NOB, AMX all use NO_2^-
 - AOB and AMX use NH₃
 - Cannot infer anammox activity using NH_3 or NO_2^- depletion profiles

Estimates of activity from X_{amx} conc.

• Combination of X_{amx} with steady state mass balances to estimate μ_{max}

 $\ln X_{amx} = \ln X_{amx,o} + \mu \times t \rightarrow \mu_{max} = 0.11-0.15 \text{ d}^{-1}, t_d = 5.3 \text{ days}$

• We don't want to rely on process upsets to estimate μ_{max}

Biofilm reactor set up

- Inoculum derived from activated sludge basin of Red Hook WPCP in New York City
- Virgin media seeded with activated sludge
- Fed with anaerobic digestion centrate from Ward's Island (no nitrite fed)
- 0.5 min air on, 2.0 min air off

Measures of anammox activity

- $t_d = 8.9 \text{ days}$
- Another utility of directly measuring X_{AMX}

How do microbial communities compare in different anammox configurations?

Nitrobacter winogradskyi

The impact of CO₂ limitation on NOB

(A) NOB performance

(a) Nitrogen conversion

(b) Cell concentration

- CO_2 limitation \rightarrow nitrite accumulation & a decrease in cell density
- A quick recovery occurred within 3 SRTs

Kim et al., unpublished results

The impact of CO₂ limitation on NOB

- (B) Cell pictures
- (a) Start-up

(b) CO_2 limitation (at 6 days)

(c) Recovery stage (Reactor)

- During CO₂ limitation, cell clumps were observed
- Environmental stress might affect cell physiology & morphology

Kim et al., unpublished results

How do Anammox reactor conditions impact NOB ?

- **CO**₂ supply
- Hydrazine
 - Anammox intermediate
- O2 limitation
- Hydroxylamine

Relative emissions from aerated and non-aerated zones

• Aerated zones contributed more to emissions than non-aerated zones 37

Short term change in DO-Nitrification

N₂O production is directional

- Manifestation of recovery response

Why is this significant? $\mu_{\max} = \frac{f_S}{(1 - f_c)} * \frac{OUR_{\max}}{X}$ $S_{nh,eff} = \frac{K_{S}((1/\theta_{C}) + b_{a})}{\mu_{\max} - ((1/\theta_{C}) + b_{a})}$

Links between functional gene expression and activity

Methanol dehydrogenase gene expression and methanol denitrification rates

- Significant positive correlations (α =0.05) between:
 - Methanol dehydrogenase gene transcription
 - Methanol sDNR values

Contact information

N(0)